改进的小波阈值鲁棒图像去噪方法

Hong Zhang, Hui Liu, Zhenhong Shang, Ruixin Li
{"title":"改进的小波阈值鲁棒图像去噪方法","authors":"Hong Zhang, Hui Liu, Zhenhong Shang, Ruixin Li","doi":"10.1109/ICSESS.2015.7339060","DOIUrl":null,"url":null,"abstract":"This paper proposed an improved threshold function and threshold estimation method for analyzing the characteristics of the wavelet threshold denoising. Because hard threshold denoising makes boundaries fuzzy and soft threshold denoising has Gibbs phenomenon, the new threshold function and estimation method have better adaptive. Results show that the improved method can effectively remove the white noise, the improved method is better than the soft, hard threshold denoising.","PeriodicalId":335871,"journal":{"name":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust image denoising with an improved wavelet threshold method\",\"authors\":\"Hong Zhang, Hui Liu, Zhenhong Shang, Ruixin Li\",\"doi\":\"10.1109/ICSESS.2015.7339060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed an improved threshold function and threshold estimation method for analyzing the characteristics of the wavelet threshold denoising. Because hard threshold denoising makes boundaries fuzzy and soft threshold denoising has Gibbs phenomenon, the new threshold function and estimation method have better adaptive. Results show that the improved method can effectively remove the white noise, the improved method is better than the soft, hard threshold denoising.\",\"PeriodicalId\":335871,\"journal\":{\"name\":\"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2015.7339060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2015.7339060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对小波阈值去噪的特点,提出了一种改进的阈值函数和阈值估计方法。由于硬阈值去噪使边界模糊,软阈值去噪存在吉布斯现象,因此新的阈值函数和估计方法具有较好的自适应性。结果表明,改进后的方法能有效去除白噪声,优于软、硬阈值去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust image denoising with an improved wavelet threshold method
This paper proposed an improved threshold function and threshold estimation method for analyzing the characteristics of the wavelet threshold denoising. Because hard threshold denoising makes boundaries fuzzy and soft threshold denoising has Gibbs phenomenon, the new threshold function and estimation method have better adaptive. Results show that the improved method can effectively remove the white noise, the improved method is better than the soft, hard threshold denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信