基于递归神经网络的网络流量预测特征编码方法性能评价

Yusuke Tokuyama, Ryo Miki, Y. Fukushima, Yuya Tarutani, T. Yokohira
{"title":"基于递归神经网络的网络流量预测特征编码方法性能评价","authors":"Yusuke Tokuyama, Ryo Miki, Y. Fukushima, Yuya Tarutani, T. Yokohira","doi":"10.1145/3395245.3396441","DOIUrl":null,"url":null,"abstract":"Recurrent neural network method considering traffic volume, timestamp and day of the week (RNN-VTD method) is a promising network traffic prediction method because of its high prediction accuracy. The RNN-VTD method encodes timestamp and day of the week, which are categorical data, to numerical data using label encoding. The label encoding, however, gives magnitude to the encoded values, which may cause misunderstanding of recurrent neural network models, and consequently, the prediction accuracy of the RNN-VTD method may be degraded. In this paper, we investigate the effect of using one-hot encoding instead of label encoding for a feature encoding method in the RNN-VTD method. In the one-hot encoding, each input data is encoded to an k-dimensional 0--1 vector where k is the number of category types. Because the encoded data do not have magnitude, it is expected that the prediction accuracy of the RNN-VTD method is improved.","PeriodicalId":166308,"journal":{"name":"Proceedings of the 2020 8th International Conference on Information and Education Technology","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Evaluation of Feature Encoding Methods in Network Traffic Prediction Using Recurrent Neural Networks\",\"authors\":\"Yusuke Tokuyama, Ryo Miki, Y. Fukushima, Yuya Tarutani, T. Yokohira\",\"doi\":\"10.1145/3395245.3396441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent neural network method considering traffic volume, timestamp and day of the week (RNN-VTD method) is a promising network traffic prediction method because of its high prediction accuracy. The RNN-VTD method encodes timestamp and day of the week, which are categorical data, to numerical data using label encoding. The label encoding, however, gives magnitude to the encoded values, which may cause misunderstanding of recurrent neural network models, and consequently, the prediction accuracy of the RNN-VTD method may be degraded. In this paper, we investigate the effect of using one-hot encoding instead of label encoding for a feature encoding method in the RNN-VTD method. In the one-hot encoding, each input data is encoded to an k-dimensional 0--1 vector where k is the number of category types. Because the encoded data do not have magnitude, it is expected that the prediction accuracy of the RNN-VTD method is improved.\",\"PeriodicalId\":166308,\"journal\":{\"name\":\"Proceedings of the 2020 8th International Conference on Information and Education Technology\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 8th International Conference on Information and Education Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3395245.3396441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 8th International Conference on Information and Education Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395245.3396441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

考虑流量、时间戳和星期几的递归神经网络方法(RNN-VTD方法)具有较高的预测精度,是一种很有前途的网络流量预测方法。RNN-VTD方法使用标签编码将时间戳和星期几这类分类数据编码为数值数据。然而,标签编码给编码值赋予了大小,这可能会引起递归神经网络模型的误解,从而降低RNN-VTD方法的预测精度。本文研究了在RNN-VTD方法中使用单热编码代替标签编码的一种特征编码方法的效果。在one-hot编码中,每个输入数据被编码为k维的0- 1向量,其中k是类别类型的数量。由于编码后的数据没有幅度,期望提高RNN-VTD方法的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Feature Encoding Methods in Network Traffic Prediction Using Recurrent Neural Networks
Recurrent neural network method considering traffic volume, timestamp and day of the week (RNN-VTD method) is a promising network traffic prediction method because of its high prediction accuracy. The RNN-VTD method encodes timestamp and day of the week, which are categorical data, to numerical data using label encoding. The label encoding, however, gives magnitude to the encoded values, which may cause misunderstanding of recurrent neural network models, and consequently, the prediction accuracy of the RNN-VTD method may be degraded. In this paper, we investigate the effect of using one-hot encoding instead of label encoding for a feature encoding method in the RNN-VTD method. In the one-hot encoding, each input data is encoded to an k-dimensional 0--1 vector where k is the number of category types. Because the encoded data do not have magnitude, it is expected that the prediction accuracy of the RNN-VTD method is improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信