{"title":"纤维层状结构的隔热吸声性能","authors":"C. Sarıçam, N. Okur, N. Uçar, N. Gürsoy","doi":"10.31462/jseam.2023.03224235","DOIUrl":null,"url":null,"abstract":"In this study, the effects of the addition of Activated carbon powder (ACP), Polyacrylonitrile nanofiber web (PAN), application of Plasma treatment (P), and the number of treatment layers on thermal insulation and sound absorption properties of fibrous structures have been examined and compared to each other. Bamboo and E-glass fibers have been used to produce fibrous layered structures. E-glass-based fibrous structures had slightly higher thermal resistance than that of bamboo fiber-based fibrous structures. However, sound absorption of bamboo-based fibrous layered structures was higher than that of E-glass fiber-based fibrous layered structures. The results revealed that plasma treatment, nanofiber web application, and activated carbon powder insertion increased the thermal resistance of fibrous layered structures made of bamboo fiber and E-glass fiber. In particular, the plasma treatment on three layers provided the highest thermal resistance for the E-glass fiber fibrous layered structure, however, PAN nanofiber application between three layers resulted in the highest thermal resistance for the bamboo fiber fibrous layered structure. Concerning sound absorption, the PAN nanofiber web provided the highest improvement for both the bamboo fiber-based layered structures and the E-glass-based layered structures.","PeriodicalId":151121,"journal":{"name":"Journal of Structural Engineering & Applied Mechanics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal insulation and sound absorption properties of fibrous layered structures\",\"authors\":\"C. Sarıçam, N. Okur, N. Uçar, N. Gürsoy\",\"doi\":\"10.31462/jseam.2023.03224235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effects of the addition of Activated carbon powder (ACP), Polyacrylonitrile nanofiber web (PAN), application of Plasma treatment (P), and the number of treatment layers on thermal insulation and sound absorption properties of fibrous structures have been examined and compared to each other. Bamboo and E-glass fibers have been used to produce fibrous layered structures. E-glass-based fibrous structures had slightly higher thermal resistance than that of bamboo fiber-based fibrous structures. However, sound absorption of bamboo-based fibrous layered structures was higher than that of E-glass fiber-based fibrous layered structures. The results revealed that plasma treatment, nanofiber web application, and activated carbon powder insertion increased the thermal resistance of fibrous layered structures made of bamboo fiber and E-glass fiber. In particular, the plasma treatment on three layers provided the highest thermal resistance for the E-glass fiber fibrous layered structure, however, PAN nanofiber application between three layers resulted in the highest thermal resistance for the bamboo fiber fibrous layered structure. Concerning sound absorption, the PAN nanofiber web provided the highest improvement for both the bamboo fiber-based layered structures and the E-glass-based layered structures.\",\"PeriodicalId\":151121,\"journal\":{\"name\":\"Journal of Structural Engineering & Applied Mechanics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Engineering & Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31462/jseam.2023.03224235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Engineering & Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31462/jseam.2023.03224235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal insulation and sound absorption properties of fibrous layered structures
In this study, the effects of the addition of Activated carbon powder (ACP), Polyacrylonitrile nanofiber web (PAN), application of Plasma treatment (P), and the number of treatment layers on thermal insulation and sound absorption properties of fibrous structures have been examined and compared to each other. Bamboo and E-glass fibers have been used to produce fibrous layered structures. E-glass-based fibrous structures had slightly higher thermal resistance than that of bamboo fiber-based fibrous structures. However, sound absorption of bamboo-based fibrous layered structures was higher than that of E-glass fiber-based fibrous layered structures. The results revealed that plasma treatment, nanofiber web application, and activated carbon powder insertion increased the thermal resistance of fibrous layered structures made of bamboo fiber and E-glass fiber. In particular, the plasma treatment on three layers provided the highest thermal resistance for the E-glass fiber fibrous layered structure, however, PAN nanofiber application between three layers resulted in the highest thermal resistance for the bamboo fiber fibrous layered structure. Concerning sound absorption, the PAN nanofiber web provided the highest improvement for both the bamboo fiber-based layered structures and the E-glass-based layered structures.