基于卷积神经网络的矿物岩石分类

Shanmuk Srinivas Amiripalli, Grandhi Nageshwara Rao, Jahnavi Behara, K. Sanjay Krishna, Mathurthi pavan venkat durga ram
{"title":"基于卷积神经网络的矿物岩石分类","authors":"Shanmuk Srinivas Amiripalli, Grandhi Nageshwara Rao, Jahnavi Behara, K. Sanjay Krishna, Mathurthi pavan venkat durga ram","doi":"10.3233/apc210235","DOIUrl":null,"url":null,"abstract":"The main aim of the research is to build a model that can effectively predict the type of mineral rocks. Rocks can be predicted by observing it is colour, shape and chemical composition. On-site technicians need to apply different techniques on rock sample in order to predict rock type. Technicians need to apply different techniques on rock samples, so it is a time-consuming process, and sometimes the predictions may be accurate, and sometimes predictions may be false. When predictions are false, it might show a negative impact in several ways for workers and organization as well. We considered an image dataset of rock types, namely Biotite, Bornite, Chrysocolla, Malachite, Muscovite, Pyrite, and Quartz. We applied CNN (Convolutional Neural Network) Algorithm to get a better prediction of different mineral rocks. Nowadays, CNN is mainly used for image classification and image recognition tasks.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mineral Rock Classification Using Convolutional Neural Network\",\"authors\":\"Shanmuk Srinivas Amiripalli, Grandhi Nageshwara Rao, Jahnavi Behara, K. Sanjay Krishna, Mathurthi pavan venkat durga ram\",\"doi\":\"10.3233/apc210235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of the research is to build a model that can effectively predict the type of mineral rocks. Rocks can be predicted by observing it is colour, shape and chemical composition. On-site technicians need to apply different techniques on rock sample in order to predict rock type. Technicians need to apply different techniques on rock samples, so it is a time-consuming process, and sometimes the predictions may be accurate, and sometimes predictions may be false. When predictions are false, it might show a negative impact in several ways for workers and organization as well. We considered an image dataset of rock types, namely Biotite, Bornite, Chrysocolla, Malachite, Muscovite, Pyrite, and Quartz. We applied CNN (Convolutional Neural Network) Algorithm to get a better prediction of different mineral rocks. Nowadays, CNN is mainly used for image classification and image recognition tasks.\",\"PeriodicalId\":429440,\"journal\":{\"name\":\"Recent Trends in Intensive Computing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Trends in Intensive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/apc210235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究的主要目的是建立一个能够有效预测矿物岩石类型的模型。岩石可以通过观察它的颜色、形状和化学成分来预测。为了预测岩石类型,现场技术人员需要对岩石样品应用不同的技术。技术人员需要对岩石样本应用不同的技术,因此这是一个耗时的过程,有时预测可能是准确的,有时预测可能是错误的。当预测错误时,它可能会在几个方面对员工和组织产生负面影响。我们考虑了一个岩石类型的图像数据集,即黑云母、斑云母、黄铜矿、孔雀石、白云母、黄铁矿和石英。我们应用CNN(卷积神经网络)算法对不同的矿物岩进行了较好的预测。目前,CNN主要用于图像分类和图像识别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mineral Rock Classification Using Convolutional Neural Network
The main aim of the research is to build a model that can effectively predict the type of mineral rocks. Rocks can be predicted by observing it is colour, shape and chemical composition. On-site technicians need to apply different techniques on rock sample in order to predict rock type. Technicians need to apply different techniques on rock samples, so it is a time-consuming process, and sometimes the predictions may be accurate, and sometimes predictions may be false. When predictions are false, it might show a negative impact in several ways for workers and organization as well. We considered an image dataset of rock types, namely Biotite, Bornite, Chrysocolla, Malachite, Muscovite, Pyrite, and Quartz. We applied CNN (Convolutional Neural Network) Algorithm to get a better prediction of different mineral rocks. Nowadays, CNN is mainly used for image classification and image recognition tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信