Дмитрий Юрьевич Демежко, Богдан Дмитриевич Хацкевич, Мансур Габдрахимович Миндубаев
{"title":"浸水式钻孔中自由热流对流的准稳定效应","authors":"Дмитрий Юрьевич Демежко, Богдан Дмитриевич Хацкевич, Мансур Габдрахимович Миндубаев","doi":"10.18799/24131830/2021/7/3271","DOIUrl":null,"url":null,"abstract":"Актуальность. Температурные измерения в водонаполненных буровых скважинах используются для решения широкого круга разведочных, промыслово-геофизических, экологических, гидрогеологических, геодинамических задач. Свободная тепловая конвекция, возникающая в скважинах при геотермическом градиенте, превышающем критическое значение, вызывает два вида термических эффектов – нестационарный и квазистационарный. Нестационарный эффект проявляется непериодическими температурными колебаниями относительно некоторого среднего значения (температурный шум) и оперирует в широком диапазоне частот – от секундных до часовых. Квазистационарный эффект связан с долговременными отклонениями температуры и градиента в скважине относительно невозмущенных характеристик окружающих пород. Последний эффект приводит к ошибочным оценкам формационных температур и тепловых потоков. Цель: обоснование применимости аппроксимационной математической модели Рамея, описывающей термический эффект вынужденных течений, для оценки квазистационарного эффекта свободной тепловой конвекции в скважине; адаптация и верификация модели на экспериментальных данных термометрии скважин. Методы: анализ геотермических и технологических параметров, определяющих квазистационарный эффект свободной тепловой конвекции, описываемых моделью Рамея; сопоставление расчетов по модели Рамея с данными экспериментальных исследований в скважинах. Результаты. Обосновано и экспериментально верифицировано применение модели Рамея для оценки квазистационарного термического эффекта свободной тепловой конвекции в водонаполненных скважинах. Уменьшение измеренного температурного градиента в сравнении с невозмущенным градиентом в окружающих скважину горных породах локализуется в верхнем и нижнем интервалах скважины. Эффект проявляется заметнее, а интервалы расширяются по мере увеличения скорости конвективных течений, в свою очередь, зависящей от числа Рэлея и диаметра скважины. В меньшей степени на величину эффекта влияет глубина скважины.","PeriodicalId":415632,"journal":{"name":"Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"КВАЗИСТАЦИОНАРНЫЙ ЭФФЕКТ СВОБОДНОЙ ТЕПЛОВОЙ КОНВЕКЦИИ В ВОДОНАПОЛНЕННЫХ БУРОВЫХ СКВАЖИНАХ\",\"authors\":\"Дмитрий Юрьевич Демежко, Богдан Дмитриевич Хацкевич, Мансур Габдрахимович Миндубаев\",\"doi\":\"10.18799/24131830/2021/7/3271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Актуальность. Температурные измерения в водонаполненных буровых скважинах используются для решения широкого круга разведочных, промыслово-геофизических, экологических, гидрогеологических, геодинамических задач. Свободная тепловая конвекция, возникающая в скважинах при геотермическом градиенте, превышающем критическое значение, вызывает два вида термических эффектов – нестационарный и квазистационарный. Нестационарный эффект проявляется непериодическими температурными колебаниями относительно некоторого среднего значения (температурный шум) и оперирует в широком диапазоне частот – от секундных до часовых. Квазистационарный эффект связан с долговременными отклонениями температуры и градиента в скважине относительно невозмущенных характеристик окружающих пород. Последний эффект приводит к ошибочным оценкам формационных температур и тепловых потоков. Цель: обоснование применимости аппроксимационной математической модели Рамея, описывающей термический эффект вынужденных течений, для оценки квазистационарного эффекта свободной тепловой конвекции в скважине; адаптация и верификация модели на экспериментальных данных термометрии скважин. Методы: анализ геотермических и технологических параметров, определяющих квазистационарный эффект свободной тепловой конвекции, описываемых моделью Рамея; сопоставление расчетов по модели Рамея с данными экспериментальных исследований в скважинах. Результаты. Обосновано и экспериментально верифицировано применение модели Рамея для оценки квазистационарного термического эффекта свободной тепловой конвекции в водонаполненных скважинах. Уменьшение измеренного температурного градиента в сравнении с невозмущенным градиентом в окружающих скважину горных породах локализуется в верхнем и нижнем интервалах скважины. Эффект проявляется заметнее, а интервалы расширяются по мере увеличения скорости конвективных течений, в свою очередь, зависящей от числа Рэлея и диаметра скважины. В меньшей степени на величину эффекта влияет глубина скважины.\",\"PeriodicalId\":415632,\"journal\":{\"name\":\"Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18799/24131830/2021/7/3271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18799/24131830/2021/7/3271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
КВАЗИСТАЦИОНАРНЫЙ ЭФФЕКТ СВОБОДНОЙ ТЕПЛОВОЙ КОНВЕКЦИИ В ВОДОНАПОЛНЕННЫХ БУРОВЫХ СКВАЖИНАХ
Актуальность. Температурные измерения в водонаполненных буровых скважинах используются для решения широкого круга разведочных, промыслово-геофизических, экологических, гидрогеологических, геодинамических задач. Свободная тепловая конвекция, возникающая в скважинах при геотермическом градиенте, превышающем критическое значение, вызывает два вида термических эффектов – нестационарный и квазистационарный. Нестационарный эффект проявляется непериодическими температурными колебаниями относительно некоторого среднего значения (температурный шум) и оперирует в широком диапазоне частот – от секундных до часовых. Квазистационарный эффект связан с долговременными отклонениями температуры и градиента в скважине относительно невозмущенных характеристик окружающих пород. Последний эффект приводит к ошибочным оценкам формационных температур и тепловых потоков. Цель: обоснование применимости аппроксимационной математической модели Рамея, описывающей термический эффект вынужденных течений, для оценки квазистационарного эффекта свободной тепловой конвекции в скважине; адаптация и верификация модели на экспериментальных данных термометрии скважин. Методы: анализ геотермических и технологических параметров, определяющих квазистационарный эффект свободной тепловой конвекции, описываемых моделью Рамея; сопоставление расчетов по модели Рамея с данными экспериментальных исследований в скважинах. Результаты. Обосновано и экспериментально верифицировано применение модели Рамея для оценки квазистационарного термического эффекта свободной тепловой конвекции в водонаполненных скважинах. Уменьшение измеренного температурного градиента в сравнении с невозмущенным градиентом в окружающих скважину горных породах локализуется в верхнем и нижнем интервалах скважины. Эффект проявляется заметнее, а интервалы расширяются по мере увеличения скорости конвективных течений, в свою очередь, зависящей от числа Рэлея и диаметра скважины. В меньшей степени на величину эффекта влияет глубина скважины.