Mehdi Haji, K. Sahoo, T. D. Bui, C. Suen, Dominique Ponson
{"title":"手写分词算法的统计假设检验","authors":"Mehdi Haji, K. Sahoo, T. D. Bui, C. Suen, Dominique Ponson","doi":"10.1109/ICFHR.2012.272","DOIUrl":null,"url":null,"abstract":"We present a statistical hypothesis testing method for handwritten word segmentation algorithms. Our proposed method can be used along with any word segmentation algorithm in order to detect over-segmented or under-segmented errors or to adapt the word segmentation algorithm to new data in an unsupervised manner. The main idea behind the proposed approach is to learn the geometrical distribution of words within a sentence using a Markov chain or a Hidden Markov Model (HMM). In the former, we assume all the necessary information is observable, where in the latter, we assume the minimum observable variables are the bounding boxes of the words, and the hidden variables are the part of speech information. Our experimental results on a benchmark database show that not only we can achieve a lower over-segmentation and under-segmentation error rate, but also a higher correct segmentation rate as a result of the proposed hypothesis testing.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Statistical Hypothesis Testing for Handwritten Word Segmentation Algorithms\",\"authors\":\"Mehdi Haji, K. Sahoo, T. D. Bui, C. Suen, Dominique Ponson\",\"doi\":\"10.1109/ICFHR.2012.272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a statistical hypothesis testing method for handwritten word segmentation algorithms. Our proposed method can be used along with any word segmentation algorithm in order to detect over-segmented or under-segmented errors or to adapt the word segmentation algorithm to new data in an unsupervised manner. The main idea behind the proposed approach is to learn the geometrical distribution of words within a sentence using a Markov chain or a Hidden Markov Model (HMM). In the former, we assume all the necessary information is observable, where in the latter, we assume the minimum observable variables are the bounding boxes of the words, and the hidden variables are the part of speech information. Our experimental results on a benchmark database show that not only we can achieve a lower over-segmentation and under-segmentation error rate, but also a higher correct segmentation rate as a result of the proposed hypothesis testing.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical Hypothesis Testing for Handwritten Word Segmentation Algorithms
We present a statistical hypothesis testing method for handwritten word segmentation algorithms. Our proposed method can be used along with any word segmentation algorithm in order to detect over-segmented or under-segmented errors or to adapt the word segmentation algorithm to new data in an unsupervised manner. The main idea behind the proposed approach is to learn the geometrical distribution of words within a sentence using a Markov chain or a Hidden Markov Model (HMM). In the former, we assume all the necessary information is observable, where in the latter, we assume the minimum observable variables are the bounding boxes of the words, and the hidden variables are the part of speech information. Our experimental results on a benchmark database show that not only we can achieve a lower over-segmentation and under-segmentation error rate, but also a higher correct segmentation rate as a result of the proposed hypothesis testing.