手写分词算法的统计假设检验

Mehdi Haji, K. Sahoo, T. D. Bui, C. Suen, Dominique Ponson
{"title":"手写分词算法的统计假设检验","authors":"Mehdi Haji, K. Sahoo, T. D. Bui, C. Suen, Dominique Ponson","doi":"10.1109/ICFHR.2012.272","DOIUrl":null,"url":null,"abstract":"We present a statistical hypothesis testing method for handwritten word segmentation algorithms. Our proposed method can be used along with any word segmentation algorithm in order to detect over-segmented or under-segmented errors or to adapt the word segmentation algorithm to new data in an unsupervised manner. The main idea behind the proposed approach is to learn the geometrical distribution of words within a sentence using a Markov chain or a Hidden Markov Model (HMM). In the former, we assume all the necessary information is observable, where in the latter, we assume the minimum observable variables are the bounding boxes of the words, and the hidden variables are the part of speech information. Our experimental results on a benchmark database show that not only we can achieve a lower over-segmentation and under-segmentation error rate, but also a higher correct segmentation rate as a result of the proposed hypothesis testing.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Statistical Hypothesis Testing for Handwritten Word Segmentation Algorithms\",\"authors\":\"Mehdi Haji, K. Sahoo, T. D. Bui, C. Suen, Dominique Ponson\",\"doi\":\"10.1109/ICFHR.2012.272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a statistical hypothesis testing method for handwritten word segmentation algorithms. Our proposed method can be used along with any word segmentation algorithm in order to detect over-segmented or under-segmented errors or to adapt the word segmentation algorithm to new data in an unsupervised manner. The main idea behind the proposed approach is to learn the geometrical distribution of words within a sentence using a Markov chain or a Hidden Markov Model (HMM). In the former, we assume all the necessary information is observable, where in the latter, we assume the minimum observable variables are the bounding boxes of the words, and the hidden variables are the part of speech information. Our experimental results on a benchmark database show that not only we can achieve a lower over-segmentation and under-segmentation error rate, but also a higher correct segmentation rate as a result of the proposed hypothesis testing.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种手写分词算法的统计假设检验方法。我们提出的方法可以与任何分词算法一起使用,以检测过分词或欠分词的错误,或使分词算法以无监督的方式适应新数据。该方法的主要思想是使用马尔可夫链或隐马尔可夫模型(HMM)来学习句子中单词的几何分布。在前者中,我们假设所有必要的信息都是可观察到的,在后者中,我们假设最小的可观察变量是单词的边界框,隐藏变量是部分语音信息。我们在一个基准数据库上的实验结果表明,我们提出的假设检验不仅可以实现较低的过分割和欠分割错误率,而且可以实现较高的正确分割率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Hypothesis Testing for Handwritten Word Segmentation Algorithms
We present a statistical hypothesis testing method for handwritten word segmentation algorithms. Our proposed method can be used along with any word segmentation algorithm in order to detect over-segmented or under-segmented errors or to adapt the word segmentation algorithm to new data in an unsupervised manner. The main idea behind the proposed approach is to learn the geometrical distribution of words within a sentence using a Markov chain or a Hidden Markov Model (HMM). In the former, we assume all the necessary information is observable, where in the latter, we assume the minimum observable variables are the bounding boxes of the words, and the hidden variables are the part of speech information. Our experimental results on a benchmark database show that not only we can achieve a lower over-segmentation and under-segmentation error rate, but also a higher correct segmentation rate as a result of the proposed hypothesis testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信