基于果蝇算法优化的因子分析和最小二乘支持向量机的电力消费场景预测

Siwei Wei, Ting Wang
{"title":"基于果蝇算法优化的因子分析和最小二乘支持向量机的电力消费场景预测","authors":"Siwei Wei, Ting Wang","doi":"10.1504/IJADS.2017.10004223","DOIUrl":null,"url":null,"abstract":"Electricity consumption forecasting is the basis and premise of power grid planning through the analysis of historical electricity consumption data and related factors. For future electricity consumption accurate prediction and influencing factors analysis, we use both scenario analysis and econometric methods comprehensively. Firstly, this paper analyses the effects of GDP, population, energy consumption and many other factors of electricity consumption in depth and then extracts the key influencing factors of electricity consumption. Secondly, electricity consumption scenario prediction model is established based on factor analysis and least squares support vector machine optimised by fruit fly algorithm. Thirdly, the performance of proposed model is tested through the comparison of different models and we get the forecast results for further analysis. The proposed model is proven to have good prediction accuracy and we provide more than one research perspective about future development of electricity consumption for decision-makers by scenario analysis.","PeriodicalId":216414,"journal":{"name":"Int. J. Appl. Decis. Sci.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity consumption scenario prediction based on factor analysis and least squares support vector machine optimised by fruit fly algorithm\",\"authors\":\"Siwei Wei, Ting Wang\",\"doi\":\"10.1504/IJADS.2017.10004223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity consumption forecasting is the basis and premise of power grid planning through the analysis of historical electricity consumption data and related factors. For future electricity consumption accurate prediction and influencing factors analysis, we use both scenario analysis and econometric methods comprehensively. Firstly, this paper analyses the effects of GDP, population, energy consumption and many other factors of electricity consumption in depth and then extracts the key influencing factors of electricity consumption. Secondly, electricity consumption scenario prediction model is established based on factor analysis and least squares support vector machine optimised by fruit fly algorithm. Thirdly, the performance of proposed model is tested through the comparison of different models and we get the forecast results for further analysis. The proposed model is proven to have good prediction accuracy and we provide more than one research perspective about future development of electricity consumption for decision-makers by scenario analysis.\",\"PeriodicalId\":216414,\"journal\":{\"name\":\"Int. J. Appl. Decis. Sci.\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Appl. Decis. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJADS.2017.10004223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJADS.2017.10004223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对历史用电量数据及相关因素的分析,预测用电量是进行电网规划的基础和前提。为了对未来用电量进行准确预测和影响因素分析,综合运用情景分析和计量经济学方法。本文首先深入分析了GDP、人口、能源消耗等诸多因素对用电量的影响,提取出影响用电量的关键因素。其次,基于因子分析和果蝇算法优化的最小二乘支持向量机,建立用电量场景预测模型;第三,通过对不同模型的比较,对所提模型的性能进行检验,得出预测结果,供进一步分析。该模型具有较好的预测精度,通过情景分析为决策者提供了一个以上的研究视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electricity consumption scenario prediction based on factor analysis and least squares support vector machine optimised by fruit fly algorithm
Electricity consumption forecasting is the basis and premise of power grid planning through the analysis of historical electricity consumption data and related factors. For future electricity consumption accurate prediction and influencing factors analysis, we use both scenario analysis and econometric methods comprehensively. Firstly, this paper analyses the effects of GDP, population, energy consumption and many other factors of electricity consumption in depth and then extracts the key influencing factors of electricity consumption. Secondly, electricity consumption scenario prediction model is established based on factor analysis and least squares support vector machine optimised by fruit fly algorithm. Thirdly, the performance of proposed model is tested through the comparison of different models and we get the forecast results for further analysis. The proposed model is proven to have good prediction accuracy and we provide more than one research perspective about future development of electricity consumption for decision-makers by scenario analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信