基于子空间拟合的自适应二维DOA估计

Jie Zhuang, L. Yang, Guo-Yong Ning, I. Hussein, Wei Wang
{"title":"基于子空间拟合的自适应二维DOA估计","authors":"Jie Zhuang, L. Yang, Guo-Yong Ning, I. Hussein, Wei Wang","doi":"10.1109/ICDSP.2018.8631546","DOIUrl":null,"url":null,"abstract":"Direction-of-arrival (DOA) estimation is a ubiquitous task in array processing. In this paper, we propose an adaptive 2-dimensional direction finding framework to track multiple moving targets by using the subspace fitting method. First, we expand the steering vectors of the current snapshot in a Taylor series around the DOAs of the previous snapshot. Then we transform the subspace fitting problem into a set of linear equations. As a result, the DOAs of each snapshot can be updated by solving a set of linear equations and we no longer need to search the 2-D spatial spectrum. In comparison with the traditional 2-D MUSIC, the proposed method not only reduces the computational complexity considerably but also has better estimation performance.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive 2-D DOA Estimation using Subspace Fitting\",\"authors\":\"Jie Zhuang, L. Yang, Guo-Yong Ning, I. Hussein, Wei Wang\",\"doi\":\"10.1109/ICDSP.2018.8631546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direction-of-arrival (DOA) estimation is a ubiquitous task in array processing. In this paper, we propose an adaptive 2-dimensional direction finding framework to track multiple moving targets by using the subspace fitting method. First, we expand the steering vectors of the current snapshot in a Taylor series around the DOAs of the previous snapshot. Then we transform the subspace fitting problem into a set of linear equations. As a result, the DOAs of each snapshot can be updated by solving a set of linear equations and we no longer need to search the 2-D spatial spectrum. In comparison with the traditional 2-D MUSIC, the proposed method not only reduces the computational complexity considerably but also has better estimation performance.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

到达方向估计是阵列处理中普遍存在的问题。本文提出了一种基于子空间拟合的自适应二维测向框架,用于跟踪多个运动目标。首先,我们围绕前一个快照的doa在泰勒级数中展开当前快照的转向向量。然后将子空间拟合问题转化为一组线性方程。这样就可以通过求解一组线性方程来更新每个快照的doa,而不再需要搜索二维空间谱。与传统的二维MUSIC方法相比,该方法不仅大大降低了计算复杂度,而且具有更好的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive 2-D DOA Estimation using Subspace Fitting
Direction-of-arrival (DOA) estimation is a ubiquitous task in array processing. In this paper, we propose an adaptive 2-dimensional direction finding framework to track multiple moving targets by using the subspace fitting method. First, we expand the steering vectors of the current snapshot in a Taylor series around the DOAs of the previous snapshot. Then we transform the subspace fitting problem into a set of linear equations. As a result, the DOAs of each snapshot can be updated by solving a set of linear equations and we no longer need to search the 2-D spatial spectrum. In comparison with the traditional 2-D MUSIC, the proposed method not only reduces the computational complexity considerably but also has better estimation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信