{"title":"完全贝叶斯图像分离使用马尔可夫链蒙特卡罗","authors":"K. Kayabol, E. Kuruoğlu, B. Sankur","doi":"10.1109/SIU.2007.4298718","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Bayesian Image Separation using Markov Chain Monte Carlo\",\"authors\":\"K. Kayabol, E. Kuruoğlu, B. Sankur\",\"doi\":\"10.1109/SIU.2007.4298718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.\",\"PeriodicalId\":315147,\"journal\":{\"name\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2007.4298718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully Bayesian Image Separation using Markov Chain Monte Carlo
In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.