完全贝叶斯图像分离使用马尔可夫链蒙特卡罗

K. Kayabol, E. Kuruoğlu, B. Sankur
{"title":"完全贝叶斯图像分离使用马尔可夫链蒙特卡罗","authors":"K. Kayabol, E. Kuruoğlu, B. Sankur","doi":"10.1109/SIU.2007.4298718","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Bayesian Image Separation using Markov Chain Monte Carlo\",\"authors\":\"K. Kayabol, E. Kuruoğlu, B. Sankur\",\"doi\":\"10.1109/SIU.2007.4298718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.\",\"PeriodicalId\":315147,\"journal\":{\"name\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2007.4298718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了噪声环境下的图像分离问题。在问题的定义中,考虑了贝叶斯方法。提出了一种基于马尔可夫链蒙特卡罗(MCMC)的完全随机方法,取代了其他确定性方法,用于贝叶斯图像分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Bayesian Image Separation using Markov Chain Monte Carlo
In this study, we investigate the image separation problem under noisy environments. In the definition of the problem, the Bayesian approach is considered. We present a fully stochastic method based on Markov chain Monte Carlo (MCMC), instead of other deterministic methods, used in Bayesian image separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信