Y. Asahi, T. Padioleau, G. Latu, Julien Bigot, V. Grandgirard, K. Obrejan
{"title":"性能可移植的Vlasov代码,带有c++并行算法","authors":"Y. Asahi, T. Padioleau, G. Latu, Julien Bigot, V. Grandgirard, K. Obrejan","doi":"10.1109/P3HPC56579.2022.00012","DOIUrl":null,"url":null,"abstract":"This paper presents the performance portable implementation of a kinetic plasma simulation code with C++ parallel algorithm to run across multiple CPUs and GPUs. Relying on the language standard parallelism stdpar and proposed language standard multi-dimensional array support mdspan, we demonstrate that a performance portable implementation is possible without harming the readability and productivity. We obtain a good overall performance for a mini-application in the range of 20 % to the Kokkos version on Intel Icelake, NVIDIA V100, and A100 GPUs. Our conclusion is that stdpar can be a good candidate to develop a performance portable and productive code targeting the Exascale era platform, assuming this approach will be available on AMD and/or Intel GPUs in the future.","PeriodicalId":261766,"journal":{"name":"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance portable Vlasov code with C++ parallel algorithm\",\"authors\":\"Y. Asahi, T. Padioleau, G. Latu, Julien Bigot, V. Grandgirard, K. Obrejan\",\"doi\":\"10.1109/P3HPC56579.2022.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the performance portable implementation of a kinetic plasma simulation code with C++ parallel algorithm to run across multiple CPUs and GPUs. Relying on the language standard parallelism stdpar and proposed language standard multi-dimensional array support mdspan, we demonstrate that a performance portable implementation is possible without harming the readability and productivity. We obtain a good overall performance for a mini-application in the range of 20 % to the Kokkos version on Intel Icelake, NVIDIA V100, and A100 GPUs. Our conclusion is that stdpar can be a good candidate to develop a performance portable and productive code targeting the Exascale era platform, assuming this approach will be available on AMD and/or Intel GPUs in the future.\",\"PeriodicalId\":261766,\"journal\":{\"name\":\"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/P3HPC56579.2022.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/P3HPC56579.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance portable Vlasov code with C++ parallel algorithm
This paper presents the performance portable implementation of a kinetic plasma simulation code with C++ parallel algorithm to run across multiple CPUs and GPUs. Relying on the language standard parallelism stdpar and proposed language standard multi-dimensional array support mdspan, we demonstrate that a performance portable implementation is possible without harming the readability and productivity. We obtain a good overall performance for a mini-application in the range of 20 % to the Kokkos version on Intel Icelake, NVIDIA V100, and A100 GPUs. Our conclusion is that stdpar can be a good candidate to develop a performance portable and productive code targeting the Exascale era platform, assuming this approach will be available on AMD and/or Intel GPUs in the future.