高斯过程回归在三维应变模型精度评估中的应用

Yue Li, Yong Li, S. Hassanien, Chike Okoloekwe, S. Adeeb
{"title":"高斯过程回归在三维应变模型精度评估中的应用","authors":"Yue Li, Yong Li, S. Hassanien, Chike Okoloekwe, S. Adeeb","doi":"10.1115/pvp2019-94039","DOIUrl":null,"url":null,"abstract":"\n Dents are one of the common integrity threats of long-distance transmission pipelines. The current CSA Z662 standard assesses dents based on the dent depth. However, the severity of dent features is a function of many factors. Most recently, numerical modeling via finite element analysis (FEA) has been utilized to assess dent severity, however the approach is computationally expensive. Recently, the authors’ research group developed a robust but much simplified analytical model to evaluate the strains in dented pipes based on the geometry of the deformed pipe. When the strain distribution predicted using the analytical model is benchmarked against the strains by nonlinear FEA they showed a good agreement with certain error. The procedure, however, predicts more conservative results in terms of the maximum equivalent plastic strain (PEEQ). In order to estimate the accuracy in the recently developed model, a series of nonlinear FEA pipe indentation simulations were conducted using the finite element analysis tool, ABAQUS and compared with the analytical prediction.\n This paper presents an application of a Bayesian machine learning method named Gaussian Process Regression (GPR) for the accuracy assessment of the developed analytical model for dent strain assessment, quantifying the error in comparison with the FEA in terms of the maximum PEEQ. The Gaussian Process (GP) model holds many advantages such as easy coding, prediction with probability interpretation, and self-adaptive acquisition of hyper-parameters.\n By varying the dent depth and the indenter radius, this paper provides a model that quantifies the error in the developed analytical model. The proposed model can be utilized to rapidly determine the severity of a dent along with the accuracy of the prediction. This analysis method can also serve as a reference for other analytical expressions.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Gaussian Process Regression for the Accuracy Assessment of a Three-Dimensional Strain-Based Model\",\"authors\":\"Yue Li, Yong Li, S. Hassanien, Chike Okoloekwe, S. Adeeb\",\"doi\":\"10.1115/pvp2019-94039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Dents are one of the common integrity threats of long-distance transmission pipelines. The current CSA Z662 standard assesses dents based on the dent depth. However, the severity of dent features is a function of many factors. Most recently, numerical modeling via finite element analysis (FEA) has been utilized to assess dent severity, however the approach is computationally expensive. Recently, the authors’ research group developed a robust but much simplified analytical model to evaluate the strains in dented pipes based on the geometry of the deformed pipe. When the strain distribution predicted using the analytical model is benchmarked against the strains by nonlinear FEA they showed a good agreement with certain error. The procedure, however, predicts more conservative results in terms of the maximum equivalent plastic strain (PEEQ). In order to estimate the accuracy in the recently developed model, a series of nonlinear FEA pipe indentation simulations were conducted using the finite element analysis tool, ABAQUS and compared with the analytical prediction.\\n This paper presents an application of a Bayesian machine learning method named Gaussian Process Regression (GPR) for the accuracy assessment of the developed analytical model for dent strain assessment, quantifying the error in comparison with the FEA in terms of the maximum PEEQ. The Gaussian Process (GP) model holds many advantages such as easy coding, prediction with probability interpretation, and self-adaptive acquisition of hyper-parameters.\\n By varying the dent depth and the indenter radius, this paper provides a model that quantifies the error in the developed analytical model. The proposed model can be utilized to rapidly determine the severity of a dent along with the accuracy of the prediction. This analysis method can also serve as a reference for other analytical expressions.\",\"PeriodicalId\":150804,\"journal\":{\"name\":\"Volume 3: Design and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-94039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-94039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

凹痕是长输管道常见的完整性威胁之一。目前的CSA Z662标准基于凹痕深度评估凹痕。然而,凹痕特征的严重程度是许多因素的函数。最近,通过有限元分析(FEA)的数值模拟已被用于评估凹痕严重程度,但该方法计算成本很高。最近,作者的研究小组开发了一种鲁棒但大大简化的分析模型,以评估凹痕管道的应变基于变形管道的几何形状。将解析模型预测的应变分布与非线性有限元计算的应变进行对比,结果表明两者吻合较好,但存在一定误差。然而,该程序在最大等效塑性应变(PEEQ)方面预测更为保守的结果。为了评估新建立的模型的精度,利用有限元分析工具ABAQUS进行了一系列非线性压痕有限元模拟,并与分析预测结果进行了比较。本文将贝叶斯机器学习方法高斯过程回归(GPR)应用于所建立的凹痕应变评估分析模型的精度评估,并根据最大PEEQ量化与有限元分析的误差。高斯过程(GP)模型具有易于编码、具有概率解释的预测和超参数自适应获取等优点。通过改变压痕深度和压痕半径,本文提供了一个模型来量化所建立的分析模型中的误差。该模型可用于快速确定凹痕的严重程度以及预测的准确性。该分析方法也可作为其他解析表达式的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Gaussian Process Regression for the Accuracy Assessment of a Three-Dimensional Strain-Based Model
Dents are one of the common integrity threats of long-distance transmission pipelines. The current CSA Z662 standard assesses dents based on the dent depth. However, the severity of dent features is a function of many factors. Most recently, numerical modeling via finite element analysis (FEA) has been utilized to assess dent severity, however the approach is computationally expensive. Recently, the authors’ research group developed a robust but much simplified analytical model to evaluate the strains in dented pipes based on the geometry of the deformed pipe. When the strain distribution predicted using the analytical model is benchmarked against the strains by nonlinear FEA they showed a good agreement with certain error. The procedure, however, predicts more conservative results in terms of the maximum equivalent plastic strain (PEEQ). In order to estimate the accuracy in the recently developed model, a series of nonlinear FEA pipe indentation simulations were conducted using the finite element analysis tool, ABAQUS and compared with the analytical prediction. This paper presents an application of a Bayesian machine learning method named Gaussian Process Regression (GPR) for the accuracy assessment of the developed analytical model for dent strain assessment, quantifying the error in comparison with the FEA in terms of the maximum PEEQ. The Gaussian Process (GP) model holds many advantages such as easy coding, prediction with probability interpretation, and self-adaptive acquisition of hyper-parameters. By varying the dent depth and the indenter radius, this paper provides a model that quantifies the error in the developed analytical model. The proposed model can be utilized to rapidly determine the severity of a dent along with the accuracy of the prediction. This analysis method can also serve as a reference for other analytical expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信