ECRAM作为高速、低功耗神经形态计算的可扩展突触细胞

Jianshi Tang, Douglas M. Bishop, Seyoung Kim, M. Copel, T. Gokmen, T. Todorov, SangHoon Shin, Ko-Tao Lee, P. Solomon, Kevin K. H. Chan, W. Haensch, J. Rozen
{"title":"ECRAM作为高速、低功耗神经形态计算的可扩展突触细胞","authors":"Jianshi Tang, Douglas M. Bishop, Seyoung Kim, M. Copel, T. Gokmen, T. Todorov, SangHoon Shin, Ko-Tao Lee, P. Solomon, Kevin K. H. Chan, W. Haensch, J. Rozen","doi":"10.1109/IEDM.2018.8614551","DOIUrl":null,"url":null,"abstract":"We demonstrate a nonvolatile Electro-Chemical Random-Access Memory (ECRAM) based on lithium (Li) ion intercalation in tungsten oxide (WO3) for high-speed, low-power neuromorphic computing. Symmetric and linear update on the channel conductance is achieved using gate current pulses, where up to 1000 discrete states with large dynamic range and good retention are demonstrated. MNIST simulation based on the experimental data shows an accuracy of 96%. For the first time, high-speed programming with pulse width down to 5 ns and device operation at scales down to $300\\times 300\\ \\text{nm}^{2}$ are shown, confirming the technological relevance of ECRAM for neuromorphic array implementation. It is also verified that the conductance change scales linearly with pulse width, amplitude and charge, projecting an ultralow switching energy ∼1 fJ for $100\\times 100\\ \\text{nm}^{2}$ devices.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing\",\"authors\":\"Jianshi Tang, Douglas M. Bishop, Seyoung Kim, M. Copel, T. Gokmen, T. Todorov, SangHoon Shin, Ko-Tao Lee, P. Solomon, Kevin K. H. Chan, W. Haensch, J. Rozen\",\"doi\":\"10.1109/IEDM.2018.8614551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a nonvolatile Electro-Chemical Random-Access Memory (ECRAM) based on lithium (Li) ion intercalation in tungsten oxide (WO3) for high-speed, low-power neuromorphic computing. Symmetric and linear update on the channel conductance is achieved using gate current pulses, where up to 1000 discrete states with large dynamic range and good retention are demonstrated. MNIST simulation based on the experimental data shows an accuracy of 96%. For the first time, high-speed programming with pulse width down to 5 ns and device operation at scales down to $300\\\\times 300\\\\ \\\\text{nm}^{2}$ are shown, confirming the technological relevance of ECRAM for neuromorphic array implementation. It is also verified that the conductance change scales linearly with pulse width, amplitude and charge, projecting an ultralow switching energy ∼1 fJ for $100\\\\times 100\\\\ \\\\text{nm}^{2}$ devices.\",\"PeriodicalId\":152963,\"journal\":{\"name\":\"2018 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2018.8614551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2018.8614551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

摘要

我们展示了一种基于锂(Li)离子嵌入氧化钨(WO3)的非易失性电化学随机存取存储器(ECRAM),用于高速,低功耗神经形态计算。使用栅极电流脉冲实现通道电导的对称和线性更新,其中显示了多达1000个具有大动态范围和良好保持的离散状态。基于实验数据的MNIST仿真表明,该方法的准确率为96%。首次展示了脉冲宽度低至5ns的高速编程和器件操作规模低至$300\ × 300\ \text{nm}^{2}$,证实了ECRAM与神经形态阵列实现的技术相关性。还验证了电导变化与脉冲宽度、幅度和电荷呈线性关系,为$100\ × 100\ \text{nm}^{2}$器件投射了一个超低开关能量~ 1 fJ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing
We demonstrate a nonvolatile Electro-Chemical Random-Access Memory (ECRAM) based on lithium (Li) ion intercalation in tungsten oxide (WO3) for high-speed, low-power neuromorphic computing. Symmetric and linear update on the channel conductance is achieved using gate current pulses, where up to 1000 discrete states with large dynamic range and good retention are demonstrated. MNIST simulation based on the experimental data shows an accuracy of 96%. For the first time, high-speed programming with pulse width down to 5 ns and device operation at scales down to $300\times 300\ \text{nm}^{2}$ are shown, confirming the technological relevance of ECRAM for neuromorphic array implementation. It is also verified that the conductance change scales linearly with pulse width, amplitude and charge, projecting an ultralow switching energy ∼1 fJ for $100\times 100\ \text{nm}^{2}$ devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信