使用百科知识来理解查询

Kejun Zhao, Xiaofeng Meng, Hehan Li, Zhongyuan Wang
{"title":"使用百科知识来理解查询","authors":"Kejun Zhao, Xiaofeng Meng, Hehan Li, Zhongyuan Wang","doi":"10.1145/2810355.2810358","DOIUrl":null,"url":null,"abstract":"Query understanding is a challenging but beneficial task. In this paper, we propose a context-aware method to use the encyclopedic knowledge to aid in query understanding. Given a query, we first use a dictionary constructed from the encyclopedic knowledge bases to detect the possible entities and their associated categories. Then, we use a topic based ethod to derive semantic information from the query. By comparing the topical similarity between various candidate phrases, we get the most likely entities and their related categories. Experimental results show that our method has achieved a great improvement over previous approaches and the efficiency is acceptable for online search.","PeriodicalId":269715,"journal":{"name":"Proceedings of the First International Workshop on Novel Web Search Interfaces and Systems","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Encyclopedic Knowledge to Understand Queries\",\"authors\":\"Kejun Zhao, Xiaofeng Meng, Hehan Li, Zhongyuan Wang\",\"doi\":\"10.1145/2810355.2810358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query understanding is a challenging but beneficial task. In this paper, we propose a context-aware method to use the encyclopedic knowledge to aid in query understanding. Given a query, we first use a dictionary constructed from the encyclopedic knowledge bases to detect the possible entities and their associated categories. Then, we use a topic based ethod to derive semantic information from the query. By comparing the topical similarity between various candidate phrases, we get the most likely entities and their related categories. Experimental results show that our method has achieved a great improvement over previous approaches and the efficiency is acceptable for online search.\",\"PeriodicalId\":269715,\"journal\":{\"name\":\"Proceedings of the First International Workshop on Novel Web Search Interfaces and Systems\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Workshop on Novel Web Search Interfaces and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2810355.2810358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Workshop on Novel Web Search Interfaces and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2810355.2810358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

查询理解是一项具有挑战性但有益的任务。在本文中,我们提出了一种上下文感知的方法,利用百科知识来帮助查询理解。给定一个查询,我们首先使用从百科知识库构造的字典来检测可能的实体及其相关类别。然后,我们使用基于主题的方法从查询中获得语义信息。通过比较不同候选短语之间的主题相似度,得到最有可能的实体及其相关类别。实验结果表明,我们的方法比以前的方法有了很大的改进,对于在线搜索来说,效率是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Encyclopedic Knowledge to Understand Queries
Query understanding is a challenging but beneficial task. In this paper, we propose a context-aware method to use the encyclopedic knowledge to aid in query understanding. Given a query, we first use a dictionary constructed from the encyclopedic knowledge bases to detect the possible entities and their associated categories. Then, we use a topic based ethod to derive semantic information from the query. By comparing the topical similarity between various candidate phrases, we get the most likely entities and their related categories. Experimental results show that our method has achieved a great improvement over previous approaches and the efficiency is acceptable for online search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信