蒙古语表情符号情感分类研究

Qian Zhang, Qing-dao-er-ji Ren, B. Saheya
{"title":"蒙古语表情符号情感分类研究","authors":"Qian Zhang, Qing-dao-er-ji Ren, B. Saheya","doi":"10.1109/CACML55074.2022.00021","DOIUrl":null,"url":null,"abstract":"A Mongolian emotion classification algorithm incorporating emojis is proposed to address the problems of small Mongolian emotion classification corpus, poor classification results, and underutilization of emoji emotion features. Firstly, we extract Mongolian text data from the corpus, vectorize it using FastText algorithm and further learn the Mongolian text features. Secondly, emojis data are extracted from the corpus, vectorized and trained in GRU network to fully learn the emotion features of emoji. Then the attention mechanism is used to adjust the attention dynamics of text and emoji features in the model. Finally, the sentiment features of text and emoji are classified with softmax layer for sentiment classification. The experimental results show that the Mongolian sentiment classification algorithm with fused emojis outperforms FastText, Word2vec_BiLSTM and Glove _ BiLSTM sentiment classification algorithms in terms of precision, recall, F1 value and accuracy. The results show the effectiveness of the proposed method and provide a reference for Mongolian sentiment analysis and opinion prediction.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Mongolian Emotion Classification Incorporating Emojis\",\"authors\":\"Qian Zhang, Qing-dao-er-ji Ren, B. Saheya\",\"doi\":\"10.1109/CACML55074.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Mongolian emotion classification algorithm incorporating emojis is proposed to address the problems of small Mongolian emotion classification corpus, poor classification results, and underutilization of emoji emotion features. Firstly, we extract Mongolian text data from the corpus, vectorize it using FastText algorithm and further learn the Mongolian text features. Secondly, emojis data are extracted from the corpus, vectorized and trained in GRU network to fully learn the emotion features of emoji. Then the attention mechanism is used to adjust the attention dynamics of text and emoji features in the model. Finally, the sentiment features of text and emoji are classified with softmax layer for sentiment classification. The experimental results show that the Mongolian sentiment classification algorithm with fused emojis outperforms FastText, Word2vec_BiLSTM and Glove _ BiLSTM sentiment classification algorithms in terms of precision, recall, F1 value and accuracy. The results show the effectiveness of the proposed method and provide a reference for Mongolian sentiment analysis and opinion prediction.\",\"PeriodicalId\":137505,\"journal\":{\"name\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACML55074.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对蒙古语情感分类语料库小、分类效果差、表情符号情感特征未得到充分利用等问题,提出了一种包含表情符号的蒙古语情感分类算法。首先,从语料库中提取蒙古语文本数据,利用FastText算法对其进行矢量化,进一步学习蒙古语文本特征;其次,从语料库中提取表情符号数据,在GRU网络中进行矢量化和训练,充分学习表情符号的情感特征。然后利用注意机制调整模型中文本和表情符号特征的注意动态。最后,利用softmax层对文本和表情符号的情感特征进行分类,进行情感分类。实验结果表明,融合表情符号的蒙古语情感分类算法在准确率、查全率、F1值和准确率方面均优于FastText、Word2vec_BiLSTM和Glove _BiLSTM情感分类算法。结果表明了该方法的有效性,为蒙古语情感分析和意见预测提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Mongolian Emotion Classification Incorporating Emojis
A Mongolian emotion classification algorithm incorporating emojis is proposed to address the problems of small Mongolian emotion classification corpus, poor classification results, and underutilization of emoji emotion features. Firstly, we extract Mongolian text data from the corpus, vectorize it using FastText algorithm and further learn the Mongolian text features. Secondly, emojis data are extracted from the corpus, vectorized and trained in GRU network to fully learn the emotion features of emoji. Then the attention mechanism is used to adjust the attention dynamics of text and emoji features in the model. Finally, the sentiment features of text and emoji are classified with softmax layer for sentiment classification. The experimental results show that the Mongolian sentiment classification algorithm with fused emojis outperforms FastText, Word2vec_BiLSTM and Glove _ BiLSTM sentiment classification algorithms in terms of precision, recall, F1 value and accuracy. The results show the effectiveness of the proposed method and provide a reference for Mongolian sentiment analysis and opinion prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信