分布式太阳能集热器场的最优控制

Xiaodong Xu, Yuan Yuan, S. Dubljevic
{"title":"分布式太阳能集热器场的最优控制","authors":"Xiaodong Xu, Yuan Yuan, S. Dubljevic","doi":"10.23919/ACC.2017.7963217","DOIUrl":null,"url":null,"abstract":"The dynamics of a distributed solar collector field can be modelled by a nonlinear hyperbolic partial differential equation (PDE) based on the energy balance. The model-based optimal control of the outlet temperature is studied. One of few ways to influence the outlet temperature is by adjusting the oil pump volumetric flow rate. In this work, an optimal algorithm is developed to minimize the mismatch between the outlet temperature and a desired temperature. The method is based on the adjoint approach for constrained optimization problems with a nonlinear hyperbolic PDE applied as an optimization constraint. In particular, the algorithm simplifies a problem by decomposing it into a two-level optimization problem. Unlike the traditional tracking control such as motion planing, the reference tracking equations in this work do not need state trajectory generation. Finally, the proposed approach is verified to perform well via a computer simulation.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal control of a distributed solar collector field\",\"authors\":\"Xiaodong Xu, Yuan Yuan, S. Dubljevic\",\"doi\":\"10.23919/ACC.2017.7963217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of a distributed solar collector field can be modelled by a nonlinear hyperbolic partial differential equation (PDE) based on the energy balance. The model-based optimal control of the outlet temperature is studied. One of few ways to influence the outlet temperature is by adjusting the oil pump volumetric flow rate. In this work, an optimal algorithm is developed to minimize the mismatch between the outlet temperature and a desired temperature. The method is based on the adjoint approach for constrained optimization problems with a nonlinear hyperbolic PDE applied as an optimization constraint. In particular, the algorithm simplifies a problem by decomposing it into a two-level optimization problem. Unlike the traditional tracking control such as motion planing, the reference tracking equations in this work do not need state trajectory generation. Finally, the proposed approach is verified to perform well via a computer simulation.\",\"PeriodicalId\":422926,\"journal\":{\"name\":\"2017 American Control Conference (ACC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.2017.7963217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分布式集热器场的动力学可以用基于能量平衡的非线性双曲型偏微分方程(PDE)来建模。研究了基于模型的出口温度最优控制。为数不多的几种影响出口温度的方法之一是通过调节油泵的容积流量。在这项工作中,开发了一种优化算法,以尽量减少出口温度与期望温度之间的不匹配。该方法基于伴随法求解以非线性双曲偏微分方程为优化约束的约束优化问题。特别是,该算法通过将问题分解为两级优化问题来简化问题。与运动规划等传统的跟踪控制不同,该工作中的参考跟踪方程不需要生成状态轨迹。最后,通过计算机仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of a distributed solar collector field
The dynamics of a distributed solar collector field can be modelled by a nonlinear hyperbolic partial differential equation (PDE) based on the energy balance. The model-based optimal control of the outlet temperature is studied. One of few ways to influence the outlet temperature is by adjusting the oil pump volumetric flow rate. In this work, an optimal algorithm is developed to minimize the mismatch between the outlet temperature and a desired temperature. The method is based on the adjoint approach for constrained optimization problems with a nonlinear hyperbolic PDE applied as an optimization constraint. In particular, the algorithm simplifies a problem by decomposing it into a two-level optimization problem. Unlike the traditional tracking control such as motion planing, the reference tracking equations in this work do not need state trajectory generation. Finally, the proposed approach is verified to perform well via a computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信