{"title":"机械臂自适应模糊滑模控制器的设计","authors":"Sunil Kalshetti, D. S. Dixit","doi":"10.36647/ciml/03.02.a004","DOIUrl":null,"url":null,"abstract":"This paper intends to design and develop an adaptive fuzzy sliding mode controller (SMC) for robotic manipulator. Since it is not viable to pair the SMC operations with the system model every time, this paper adopts a Fuzzy Inference System (FIS) to replace the system model. It effectively achieves the experimentation in two phases. Accordingly, in the first phase, it attains the accurate features of the system model based on varied samples to characterize the robotic manipulator. In the second stage, it represents the derived fuzzy rules based on adaptive fuzzy membership functions. Moreover, it establishes the self-adaptiveness using Grey Wolf Optimization (GWO) to attain the adaptive fuzzy membership functions. The analysis distinguishes the efficiency of the adopted technique with the optimal investigational scheme and the traditional schemes such as SMC, Fuzzy SMC (FSMC) and GWO-SMC. Moreover, the comparative analysis is also performed by including the noise and validates the effectiveness of the proposed and conventional models. Index Terms : Sliding Mode Control, Robot manipulators, Controller, Noise.","PeriodicalId":203221,"journal":{"name":"Computational Intelligence and Machine Learning","volume":"609 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Self Adaptive Fuzzy Sliding Mode Controller for Robot Manipulators\",\"authors\":\"Sunil Kalshetti, D. S. Dixit\",\"doi\":\"10.36647/ciml/03.02.a004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper intends to design and develop an adaptive fuzzy sliding mode controller (SMC) for robotic manipulator. Since it is not viable to pair the SMC operations with the system model every time, this paper adopts a Fuzzy Inference System (FIS) to replace the system model. It effectively achieves the experimentation in two phases. Accordingly, in the first phase, it attains the accurate features of the system model based on varied samples to characterize the robotic manipulator. In the second stage, it represents the derived fuzzy rules based on adaptive fuzzy membership functions. Moreover, it establishes the self-adaptiveness using Grey Wolf Optimization (GWO) to attain the adaptive fuzzy membership functions. The analysis distinguishes the efficiency of the adopted technique with the optimal investigational scheme and the traditional schemes such as SMC, Fuzzy SMC (FSMC) and GWO-SMC. Moreover, the comparative analysis is also performed by including the noise and validates the effectiveness of the proposed and conventional models. Index Terms : Sliding Mode Control, Robot manipulators, Controller, Noise.\",\"PeriodicalId\":203221,\"journal\":{\"name\":\"Computational Intelligence and Machine Learning\",\"volume\":\"609 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36647/ciml/03.02.a004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36647/ciml/03.02.a004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Self Adaptive Fuzzy Sliding Mode Controller for Robot Manipulators
This paper intends to design and develop an adaptive fuzzy sliding mode controller (SMC) for robotic manipulator. Since it is not viable to pair the SMC operations with the system model every time, this paper adopts a Fuzzy Inference System (FIS) to replace the system model. It effectively achieves the experimentation in two phases. Accordingly, in the first phase, it attains the accurate features of the system model based on varied samples to characterize the robotic manipulator. In the second stage, it represents the derived fuzzy rules based on adaptive fuzzy membership functions. Moreover, it establishes the self-adaptiveness using Grey Wolf Optimization (GWO) to attain the adaptive fuzzy membership functions. The analysis distinguishes the efficiency of the adopted technique with the optimal investigational scheme and the traditional schemes such as SMC, Fuzzy SMC (FSMC) and GWO-SMC. Moreover, the comparative analysis is also performed by including the noise and validates the effectiveness of the proposed and conventional models. Index Terms : Sliding Mode Control, Robot manipulators, Controller, Noise.