利用多光谱遥感数据反演春玉米冠层叶绿素含量

Xu Jin, Meng Jihua
{"title":"利用多光谱遥感数据反演春玉米冠层叶绿素含量","authors":"Xu Jin, Meng Jihua","doi":"10.1109/AGRO-GEOINFORMATICS.2014.6910668","DOIUrl":null,"url":null,"abstract":"Nitrogen is an important organic element during the growth of the crop, the accuracy of estimation for the crop N status may improve fertilizer N use efficiency. The chlorophyll content has a close relationship with the Nitrogen content. The multispectral remote sensing data may be used to assess crop N status by estimating chlorophyll content. This paper used the statistical model and the physical model to estimate the canopy chlorophyll content. As the statistical model, a few typical VI(vegetation index), Normalized Difference Vegetation Index (NDVI), Green chlorophyll index (CIgreen), Triangular greenness index(TGI), Enhanced vegetation index(EVI), Optimized Soil-Adjusted Vegetation Index(OSAVI) were used to assess the canopy chlorophyll content. For the physical model, the PROSAIL radiative transfer model and the lookup-table(LUT) method were used. The result showed these two methods have advantages and disadvantages respectively. In terms of the estimation accuracy for the chlorophyll content, the physical model is a better choice.","PeriodicalId":161866,"journal":{"name":"2014 The Third International Conference on Agro-Geoinformatics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Retrieval Of canopy chlorophyll content for spring corn using multispectral remote sensing data\",\"authors\":\"Xu Jin, Meng Jihua\",\"doi\":\"10.1109/AGRO-GEOINFORMATICS.2014.6910668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nitrogen is an important organic element during the growth of the crop, the accuracy of estimation for the crop N status may improve fertilizer N use efficiency. The chlorophyll content has a close relationship with the Nitrogen content. The multispectral remote sensing data may be used to assess crop N status by estimating chlorophyll content. This paper used the statistical model and the physical model to estimate the canopy chlorophyll content. As the statistical model, a few typical VI(vegetation index), Normalized Difference Vegetation Index (NDVI), Green chlorophyll index (CIgreen), Triangular greenness index(TGI), Enhanced vegetation index(EVI), Optimized Soil-Adjusted Vegetation Index(OSAVI) were used to assess the canopy chlorophyll content. For the physical model, the PROSAIL radiative transfer model and the lookup-table(LUT) method were used. The result showed these two methods have advantages and disadvantages respectively. In terms of the estimation accuracy for the chlorophyll content, the physical model is a better choice.\",\"PeriodicalId\":161866,\"journal\":{\"name\":\"2014 The Third International Conference on Agro-Geoinformatics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 The Third International Conference on Agro-Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AGRO-GEOINFORMATICS.2014.6910668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 The Third International Conference on Agro-Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGRO-GEOINFORMATICS.2014.6910668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

氮是作物生长过程中重要的有机元素,对作物氮素状况的准确估计可以提高肥料氮素的利用效率。叶绿素含量与氮素含量关系密切。多光谱遥感数据可通过估算叶绿素含量来评估作物氮素状况。本文采用统计模型和物理模型对林冠叶绿素含量进行估算。采用几种典型植被指数(VI)、归一化植被指数(NDVI)、叶绿素指数(ciggreen)、三角绿度指数(TGI)、增长型植被指数(EVI)、优化土壤调整植被指数(OSAVI)作为统计模型来评价冠层叶绿素含量。物理模型采用PROSAIL辐射传递模型和查找表(LUT)法。结果表明,这两种方法各有优缺点。就叶绿素含量的估计精度而言,物理模型是较好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieval Of canopy chlorophyll content for spring corn using multispectral remote sensing data
Nitrogen is an important organic element during the growth of the crop, the accuracy of estimation for the crop N status may improve fertilizer N use efficiency. The chlorophyll content has a close relationship with the Nitrogen content. The multispectral remote sensing data may be used to assess crop N status by estimating chlorophyll content. This paper used the statistical model and the physical model to estimate the canopy chlorophyll content. As the statistical model, a few typical VI(vegetation index), Normalized Difference Vegetation Index (NDVI), Green chlorophyll index (CIgreen), Triangular greenness index(TGI), Enhanced vegetation index(EVI), Optimized Soil-Adjusted Vegetation Index(OSAVI) were used to assess the canopy chlorophyll content. For the physical model, the PROSAIL radiative transfer model and the lookup-table(LUT) method were used. The result showed these two methods have advantages and disadvantages respectively. In terms of the estimation accuracy for the chlorophyll content, the physical model is a better choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信