具有参数化不确定性任务的冗余解析

Goran Ðordevic, Dragan Kostic, M. Rasic, D. Surdilovic
{"title":"具有参数化不确定性任务的冗余解析","authors":"Goran Ðordevic, Dragan Kostic, M. Rasic, D. Surdilovic","doi":"10.1109/TELSKS.2001.955870","DOIUrl":null,"url":null,"abstract":"Redundant robots motion planning and control in uncertain task is addressed by model-based approach. Instead of controlling and adapting the environment to the robot or applying a complex visual servoing system, we model the redundancy resolution on the parameter spaces that quantify uncertainties of the task. The modeling tool is a successive approximation (SA). It provides very advantageous properties: small computational effort and small model size, accurate output, extrapolation, and generalization across the parameter set obtained by random addressing of the model. The task discussed is press loading with typical two-dimensional uncertainties in pick-up and unloading locations. The robot used is a 4-DOF planar robot. The SA-based models of redundancy resolution in a 2D parameter spaces are highly efficient: for more than 30 times less computational efforts resulted in a zero end-point errors, regardless of the task uncertainty.","PeriodicalId":253344,"journal":{"name":"5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redundancy resolution in tasks with parameterizable uncertainty\",\"authors\":\"Goran Ðordevic, Dragan Kostic, M. Rasic, D. Surdilovic\",\"doi\":\"10.1109/TELSKS.2001.955870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Redundant robots motion planning and control in uncertain task is addressed by model-based approach. Instead of controlling and adapting the environment to the robot or applying a complex visual servoing system, we model the redundancy resolution on the parameter spaces that quantify uncertainties of the task. The modeling tool is a successive approximation (SA). It provides very advantageous properties: small computational effort and small model size, accurate output, extrapolation, and generalization across the parameter set obtained by random addressing of the model. The task discussed is press loading with typical two-dimensional uncertainties in pick-up and unloading locations. The robot used is a 4-DOF planar robot. The SA-based models of redundancy resolution in a 2D parameter spaces are highly efficient: for more than 30 times less computational efforts resulted in a zero end-point errors, regardless of the task uncertainty.\",\"PeriodicalId\":253344,\"journal\":{\"name\":\"5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2001.955870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2001.955870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用基于模型的方法研究了不确定任务下冗余机器人的运动规划与控制问题。代替控制和适应环境的机器人或应用一个复杂的视觉伺服系统,我们建模冗余分辨率的参数空间,量化任务的不确定性。建模工具是逐次逼近(SA)。它提供了非常有利的特性:计算量小,模型大小小,输出准确,外推,以及通过随机寻址模型获得的参数集的泛化。所讨论的任务是具有典型二维不确定性的压力机加载。所使用的机器人是一个四自由度平面机器人。基于sa的2D参数空间冗余分辨率模型非常高效:无论任务不确定性如何,计算工作量减少30倍以上,导致零端点误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redundancy resolution in tasks with parameterizable uncertainty
Redundant robots motion planning and control in uncertain task is addressed by model-based approach. Instead of controlling and adapting the environment to the robot or applying a complex visual servoing system, we model the redundancy resolution on the parameter spaces that quantify uncertainties of the task. The modeling tool is a successive approximation (SA). It provides very advantageous properties: small computational effort and small model size, accurate output, extrapolation, and generalization across the parameter set obtained by random addressing of the model. The task discussed is press loading with typical two-dimensional uncertainties in pick-up and unloading locations. The robot used is a 4-DOF planar robot. The SA-based models of redundancy resolution in a 2D parameter spaces are highly efficient: for more than 30 times less computational efforts resulted in a zero end-point errors, regardless of the task uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信