电池储能优化选址、规模和技术选择的退化和运行感知框架

Timur Saifutdinov, C. Patsios, P. Vorobev, E. Gryazina, D. Greenwood, J. Bialek, P. Taylor
{"title":"电池储能优化选址、规模和技术选择的退化和运行感知框架","authors":"Timur Saifutdinov, C. Patsios, P. Vorobev, E. Gryazina, D. Greenwood, J. Bialek, P. Taylor","doi":"10.1109/PESGM41954.2020.9281643","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of optimal siting, sizing, and technology selection of Energy Storage System (ESS) considering degradation arising from state of charge and Depth of Discharge (DoD). The capacity lost irreversibly due to degradation provides the optimizer with a more accurate and realistic view of the capacity available throughout the asset’s entire lifetime as it depends on the actual operating profiles and particular degradation mechanisms. When taking into account the ESS’s degradation, the optimization problem becomes nonconvex, therefore no standard solver can guarantee the globally optimal solution. To overcome this, the optimization problem has been reformulated to a Mixed Integer Convex Programming (MICP) problem by substituting continuous variables that cause nonconvexity with discrete ones. The resulting MICP problem has been solved using the Branch-and-Bound algorithm along with convex programming, which performs an efficient search and guarantees the globally optimal solution. We found that the optimal battery use does not necesseraly correspond to it reaching its End of Life state at the end of the service lifetime, which is the result of nonlinear degradation mechanicms from both idling and cycling. Finally, the proposed methodology allows formulating computationally tractable stochastic optimization problem to account for future network scenarios.","PeriodicalId":106476,"journal":{"name":"2020 IEEE Power & Energy Society General Meeting (PESGM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation and Operation-Aware Framework for the Optimal Siting, Sizing and Technology Selection of Battery Storage\",\"authors\":\"Timur Saifutdinov, C. Patsios, P. Vorobev, E. Gryazina, D. Greenwood, J. Bialek, P. Taylor\",\"doi\":\"10.1109/PESGM41954.2020.9281643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of optimal siting, sizing, and technology selection of Energy Storage System (ESS) considering degradation arising from state of charge and Depth of Discharge (DoD). The capacity lost irreversibly due to degradation provides the optimizer with a more accurate and realistic view of the capacity available throughout the asset’s entire lifetime as it depends on the actual operating profiles and particular degradation mechanisms. When taking into account the ESS’s degradation, the optimization problem becomes nonconvex, therefore no standard solver can guarantee the globally optimal solution. To overcome this, the optimization problem has been reformulated to a Mixed Integer Convex Programming (MICP) problem by substituting continuous variables that cause nonconvexity with discrete ones. The resulting MICP problem has been solved using the Branch-and-Bound algorithm along with convex programming, which performs an efficient search and guarantees the globally optimal solution. We found that the optimal battery use does not necesseraly correspond to it reaching its End of Life state at the end of the service lifetime, which is the result of nonlinear degradation mechanicms from both idling and cycling. Finally, the proposed methodology allows formulating computationally tractable stochastic optimization problem to account for future network scenarios.\",\"PeriodicalId\":106476,\"journal\":{\"name\":\"2020 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM41954.2020.9281643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM41954.2020.9281643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了考虑充电状态和放电深度退化的储能系统的最佳选址、规模和技术选择问题。由于退化而不可逆转的容量损失,使优化器能够更准确、更现实地了解资产整个生命周期内的可用容量,因为它取决于实际的操作概况和特定的退化机制。当考虑ESS的退化时,优化问题变得非凸,因此没有标准求解器可以保证全局最优解。为了克服这一问题,通过将引起非凸性的连续变量替换为离散变量,将优化问题重新表述为混合整数凸规划问题。利用分支定界算法和凸规划方法对所得到的MICP问题进行了求解,该算法进行了高效的搜索,保证了全局最优解。我们发现,电池的最佳使用并不一定对应于它在使用寿命结束时达到其寿命终止状态,这是空转和循环的非线性退化机制的结果。最后,提出的方法允许制定计算上易于处理的随机优化问题,以考虑未来的网络场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degradation and Operation-Aware Framework for the Optimal Siting, Sizing and Technology Selection of Battery Storage
This paper addresses the problem of optimal siting, sizing, and technology selection of Energy Storage System (ESS) considering degradation arising from state of charge and Depth of Discharge (DoD). The capacity lost irreversibly due to degradation provides the optimizer with a more accurate and realistic view of the capacity available throughout the asset’s entire lifetime as it depends on the actual operating profiles and particular degradation mechanisms. When taking into account the ESS’s degradation, the optimization problem becomes nonconvex, therefore no standard solver can guarantee the globally optimal solution. To overcome this, the optimization problem has been reformulated to a Mixed Integer Convex Programming (MICP) problem by substituting continuous variables that cause nonconvexity with discrete ones. The resulting MICP problem has been solved using the Branch-and-Bound algorithm along with convex programming, which performs an efficient search and guarantees the globally optimal solution. We found that the optimal battery use does not necesseraly correspond to it reaching its End of Life state at the end of the service lifetime, which is the result of nonlinear degradation mechanicms from both idling and cycling. Finally, the proposed methodology allows formulating computationally tractable stochastic optimization problem to account for future network scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信