基于探针的最大切问题算法

Geng Lin
{"title":"基于探针的最大切问题算法","authors":"Geng Lin","doi":"10.1109/ICNC.2012.6234769","DOIUrl":null,"url":null,"abstract":"The max-cut problem is a classical combinatorial optimization problem. This paper uses a Population Reinforced Optimization Based Exploration (PROBE) as a framework for developing metaheuristic algorithm for solving the max-cut problem. A solution is constructed by a greedy construction method, then a local search procedure, which is based on the Fiduccia and Mattheyses heuristic, is used to improve the solution. Experimental tests are done on some instances taken from the literature. The experiment results and comparisons show that the proposed algorithm is efficient for these tested benchmarks.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PROBE-based algorithm for the max-cut problem\",\"authors\":\"Geng Lin\",\"doi\":\"10.1109/ICNC.2012.6234769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The max-cut problem is a classical combinatorial optimization problem. This paper uses a Population Reinforced Optimization Based Exploration (PROBE) as a framework for developing metaheuristic algorithm for solving the max-cut problem. A solution is constructed by a greedy construction method, then a local search procedure, which is based on the Fiduccia and Mattheyses heuristic, is used to improve the solution. Experimental tests are done on some instances taken from the literature. The experiment results and comparisons show that the proposed algorithm is efficient for these tested benchmarks.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大切问题是一个经典的组合优化问题。本文采用基于种群增强优化的探索(PROBE)作为框架,开发了求解最大切问题的元启发式算法。首先采用贪心构造法构造解,然后采用基于Fiduccia和matthews启发式的局部搜索过程对解进行改进。对文献中的一些实例进行了实验检验。实验结果和对比表明,该算法在这些测试基准下是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PROBE-based algorithm for the max-cut problem
The max-cut problem is a classical combinatorial optimization problem. This paper uses a Population Reinforced Optimization Based Exploration (PROBE) as a framework for developing metaheuristic algorithm for solving the max-cut problem. A solution is constructed by a greedy construction method, then a local search procedure, which is based on the Fiduccia and Mattheyses heuristic, is used to improve the solution. Experimental tests are done on some instances taken from the literature. The experiment results and comparisons show that the proposed algorithm is efficient for these tested benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信