归纳学习优化仿真模型输出

R. Barton, H. Szczerbicka
{"title":"归纳学习优化仿真模型输出","authors":"R. Barton, H. Szczerbicka","doi":"10.1109/IPMM.1999.792488","DOIUrl":null,"url":null,"abstract":"In this article we present the optimization approach, 'ML-Opt', which approximates the structure of an unknown goal function by analyzing functional dependency between search points. The functional dependency is determined by an inductive learning algorithm, which generates a classifier used as a control structure in the optimization process. A numerical example and discussions are presented.","PeriodicalId":194215,"journal":{"name":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inductive learning for optimization of simulation model output\",\"authors\":\"R. Barton, H. Szczerbicka\",\"doi\":\"10.1109/IPMM.1999.792488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we present the optimization approach, 'ML-Opt', which approximates the structure of an unknown goal function by analyzing functional dependency between search points. The functional dependency is determined by an inductive learning algorithm, which generates a classifier used as a control structure in the optimization process. A numerical example and discussions are presented.\",\"PeriodicalId\":194215,\"journal\":{\"name\":\"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPMM.1999.792488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPMM.1999.792488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种优化方法,“ML-Opt”,它通过分析搜索点之间的函数依赖关系来近似未知目标函数的结构。函数依赖关系由一种归纳学习算法确定,该算法生成一个分类器作为优化过程中的控制结构。给出了一个数值算例并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inductive learning for optimization of simulation model output
In this article we present the optimization approach, 'ML-Opt', which approximates the structure of an unknown goal function by analyzing functional dependency between search points. The functional dependency is determined by an inductive learning algorithm, which generates a classifier used as a control structure in the optimization process. A numerical example and discussions are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信