基于蚁群优化和智能阈值的数字图像边缘检测

H. Reza-Alikhani, A. Naghsh, R. Jalali-Varnamkhasti
{"title":"基于蚁群优化和智能阈值的数字图像边缘检测","authors":"H. Reza-Alikhani, A. Naghsh, R. Jalali-Varnamkhasti","doi":"10.1109/PRIA.2013.6528432","DOIUrl":null,"url":null,"abstract":"An edge detection algorithm based on Ant Colony Optimization (ACO) and Fuzzy Inference System (FIS) and neural network is presented. This algorithm uses a FIS with 4 simple rules to identify the probable edge pixels in 4 main directions, then the ACO is applied for assigning a higher pheromone value for the probable edge pixels rather than other pixels so that the ants movement toward edge pixels get faster. Another factor that needs to be considered in order to conduct the ants' movement is the influence of the heuristic information in the movement of any ant to be proportional to local change in intensity of each pixel. Finally, by using an intelligent thresholding technique which is provided by training a neural network, the edges from the final pheromone matrix are extracted. Experimental results are provided in order to demonstrate the superior performance of the proposed approach.","PeriodicalId":370476,"journal":{"name":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Edge detection of digital images using a conducted ant colony optimization and intelligent thresholding\",\"authors\":\"H. Reza-Alikhani, A. Naghsh, R. Jalali-Varnamkhasti\",\"doi\":\"10.1109/PRIA.2013.6528432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An edge detection algorithm based on Ant Colony Optimization (ACO) and Fuzzy Inference System (FIS) and neural network is presented. This algorithm uses a FIS with 4 simple rules to identify the probable edge pixels in 4 main directions, then the ACO is applied for assigning a higher pheromone value for the probable edge pixels rather than other pixels so that the ants movement toward edge pixels get faster. Another factor that needs to be considered in order to conduct the ants' movement is the influence of the heuristic information in the movement of any ant to be proportional to local change in intensity of each pixel. Finally, by using an intelligent thresholding technique which is provided by training a neural network, the edges from the final pheromone matrix are extracted. Experimental results are provided in order to demonstrate the superior performance of the proposed approach.\",\"PeriodicalId\":370476,\"journal\":{\"name\":\"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2013.6528432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2013.6528432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于蚁群算法、模糊推理系统和神经网络的边缘检测算法。该算法采用4条简单规则的FIS识别4个主要方向上的可能边缘像素,然后应用蚁群算法为可能边缘像素分配比其他像素更高的信息素值,从而使蚂蚁更快地向边缘像素移动。为了进行蚂蚁的运动,需要考虑的另一个因素是任何蚂蚁运动中的启发式信息的影响与每个像素的局部强度变化成正比。最后,利用训练神经网络提供的智能阈值技术,从最终信息素矩阵中提取边缘。实验结果证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge detection of digital images using a conducted ant colony optimization and intelligent thresholding
An edge detection algorithm based on Ant Colony Optimization (ACO) and Fuzzy Inference System (FIS) and neural network is presented. This algorithm uses a FIS with 4 simple rules to identify the probable edge pixels in 4 main directions, then the ACO is applied for assigning a higher pheromone value for the probable edge pixels rather than other pixels so that the ants movement toward edge pixels get faster. Another factor that needs to be considered in order to conduct the ants' movement is the influence of the heuristic information in the movement of any ant to be proportional to local change in intensity of each pixel. Finally, by using an intelligent thresholding technique which is provided by training a neural network, the edges from the final pheromone matrix are extracted. Experimental results are provided in order to demonstrate the superior performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信