M. Marchese, I. Kyriakou, M. Tamvakis, F. Di Iorio
{"title":"预测能源价格波动及其相关性:来自分数整合多元Garch模型的新证据","authors":"M. Marchese, I. Kyriakou, M. Tamvakis, F. Di Iorio","doi":"10.2139/ssrn.3544242","DOIUrl":null,"url":null,"abstract":"Energy price volatilities and correlations have been modeled extensively using short-memory multivariate GARCH models. This paper investigates the potential benefits from using multivariate fractionally integrated GARCH models from a forecasting and a risk management perspective. Several multivariate GARCH models for the spot returns on three major energy markets are compared. Our in-sample results show significant evidence of long-memory decay in energy price returns volatilities, leverage effects and time-varying auto-correlations. The one-step ahead forecasting performance of the models is assessed using several robust matrix loss functions by means of three approaches: the Superior Predictive Ability test, the Model Confidence Set and the Value-at-Risk. The results indicate that the multivariate models incorporating long-memory outperform the short-memory benchmarks in forecasting the conditional co-variance matrix and associated risk magnitudes.","PeriodicalId":154391,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Energy Price Volatilities and Correlations: New Evidence From Fractionally Integrated Multivariate Garch Models\",\"authors\":\"M. Marchese, I. Kyriakou, M. Tamvakis, F. Di Iorio\",\"doi\":\"10.2139/ssrn.3544242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy price volatilities and correlations have been modeled extensively using short-memory multivariate GARCH models. This paper investigates the potential benefits from using multivariate fractionally integrated GARCH models from a forecasting and a risk management perspective. Several multivariate GARCH models for the spot returns on three major energy markets are compared. Our in-sample results show significant evidence of long-memory decay in energy price returns volatilities, leverage effects and time-varying auto-correlations. The one-step ahead forecasting performance of the models is assessed using several robust matrix loss functions by means of three approaches: the Superior Predictive Ability test, the Model Confidence Set and the Value-at-Risk. The results indicate that the multivariate models incorporating long-memory outperform the short-memory benchmarks in forecasting the conditional co-variance matrix and associated risk magnitudes.\",\"PeriodicalId\":154391,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3544242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3544242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting Energy Price Volatilities and Correlations: New Evidence From Fractionally Integrated Multivariate Garch Models
Energy price volatilities and correlations have been modeled extensively using short-memory multivariate GARCH models. This paper investigates the potential benefits from using multivariate fractionally integrated GARCH models from a forecasting and a risk management perspective. Several multivariate GARCH models for the spot returns on three major energy markets are compared. Our in-sample results show significant evidence of long-memory decay in energy price returns volatilities, leverage effects and time-varying auto-correlations. The one-step ahead forecasting performance of the models is assessed using several robust matrix loss functions by means of three approaches: the Superior Predictive Ability test, the Model Confidence Set and the Value-at-Risk. The results indicate that the multivariate models incorporating long-memory outperform the short-memory benchmarks in forecasting the conditional co-variance matrix and associated risk magnitudes.