基于集群计算的低成本并行K-means VQ算法

A. Britto, P. L. D. Souza, R. Sabourin, S. Souza, D. Borges
{"title":"基于集群计算的低成本并行K-means VQ算法","authors":"A. Britto, P. L. D. Souza, R. Sabourin, S. Souza, D. Borges","doi":"10.1109/ICDAR.2003.1227780","DOIUrl":null,"url":null,"abstract":"In this paper we propose a parallel approach for the K-meansVector Quantization (VQ) algorithm used in a two-stageHidden Markov Model (HMM)-based system forrecognizing handwritten numeral strings. With thisparallel algorithm, based on the master/slave paradigm,we overcome two drawbacks of the sequential version: a)the time taken to create the codebook; and b) the amountof memory necessary to work with large trainingdatabases. Distributing the training samples over theslaves' local disks reduces the overhead associated withthe communication process. In addition, modelspredicting computation and communication time havebeen developed. These models are useful to predict theoptimal number of slaves taking into account the numberof training samples and codebook size.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A low-cost parallel K-means VQ algorithm using cluster computing\",\"authors\":\"A. Britto, P. L. D. Souza, R. Sabourin, S. Souza, D. Borges\",\"doi\":\"10.1109/ICDAR.2003.1227780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a parallel approach for the K-meansVector Quantization (VQ) algorithm used in a two-stageHidden Markov Model (HMM)-based system forrecognizing handwritten numeral strings. With thisparallel algorithm, based on the master/slave paradigm,we overcome two drawbacks of the sequential version: a)the time taken to create the codebook; and b) the amountof memory necessary to work with large trainingdatabases. Distributing the training samples over theslaves' local disks reduces the overhead associated withthe communication process. In addition, modelspredicting computation and communication time havebeen developed. These models are useful to predict theoptimal number of slaves taking into account the numberof training samples and codebook size.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种用于两阶段隐马尔可夫模型(HMM)识别手写数字字符串的k -均值矢量量化(VQ)算法的并行方法。使用这种基于主/从范式的并行算法,我们克服了顺序版本的两个缺点:a)创建码本所需的时间;b)使用大型训练数据库所需的内存量。将训练样本分布在从机的本地磁盘上,可以减少与通信过程相关的开销。此外,还建立了计算量和通信时间的预测模型。考虑到训练样本的数量和码本的大小,这些模型对于预测最优奴隶数量是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low-cost parallel K-means VQ algorithm using cluster computing
In this paper we propose a parallel approach for the K-meansVector Quantization (VQ) algorithm used in a two-stageHidden Markov Model (HMM)-based system forrecognizing handwritten numeral strings. With thisparallel algorithm, based on the master/slave paradigm,we overcome two drawbacks of the sequential version: a)the time taken to create the codebook; and b) the amountof memory necessary to work with large trainingdatabases. Distributing the training samples over theslaves' local disks reduces the overhead associated withthe communication process. In addition, modelspredicting computation and communication time havebeen developed. These models are useful to predict theoptimal number of slaves taking into account the numberof training samples and codebook size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信