{"title":"航空航天应用的动态可重构计算体系结构","authors":"B. Lameres, Clint Gauer","doi":"10.1109/AERO.2009.4839513","DOIUrl":null,"url":null,"abstract":"This paper presents the design and prototyping of a computing architecture which dynamically reconfigures itself depending on the environment in which it resides. The system switches among three modes of operation (parallel processing, low power, and radiation tolerant) depending on an external radiation sensor and application input from the user. The system was prototyped on a Xilinx Virtex-5 FPGA to verify its feasibility when controlling a series of peripherals under the three modes of operation. This type of system is ideal for robust, real-time applications such as spacecraft control systems.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Dynamic reconfigurable computing architecture for aerospace applications\",\"authors\":\"B. Lameres, Clint Gauer\",\"doi\":\"10.1109/AERO.2009.4839513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and prototyping of a computing architecture which dynamically reconfigures itself depending on the environment in which it resides. The system switches among three modes of operation (parallel processing, low power, and radiation tolerant) depending on an external radiation sensor and application input from the user. The system was prototyped on a Xilinx Virtex-5 FPGA to verify its feasibility when controlling a series of peripherals under the three modes of operation. This type of system is ideal for robust, real-time applications such as spacecraft control systems.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic reconfigurable computing architecture for aerospace applications
This paper presents the design and prototyping of a computing architecture which dynamically reconfigures itself depending on the environment in which it resides. The system switches among three modes of operation (parallel processing, low power, and radiation tolerant) depending on an external radiation sensor and application input from the user. The system was prototyped on a Xilinx Virtex-5 FPGA to verify its feasibility when controlling a series of peripherals under the three modes of operation. This type of system is ideal for robust, real-time applications such as spacecraft control systems.