{"title":"动态控制精度在模糊龙格-库塔法估计一个模糊微分方程的解","authors":"M. A. Araghi, Hasan Barzegar Kelishami","doi":"10.5899/2016/JFSVA-00284","DOIUrl":null,"url":null,"abstract":"In this paper, a reliable scheme is proposed to solve fuzzy differential equations by fuzzy Runge-Kutta method of order $m$. For this purpose, the stochastic arithmetic and CESTAC method are applied to validate the results. In order to implement the C++ codes, the CADNA library is used. In this case, the optimal step size is found. The examples illustrate the efficiency and importance of using the stochastic arithmetic in place of the floating-point arithmetic.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation\",\"authors\":\"M. A. Araghi, Hasan Barzegar Kelishami\",\"doi\":\"10.5899/2016/JFSVA-00284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a reliable scheme is proposed to solve fuzzy differential equations by fuzzy Runge-Kutta method of order $m$. For this purpose, the stochastic arithmetic and CESTAC method are applied to validate the results. In order to implement the C++ codes, the CADNA library is used. In this case, the optimal step size is found. The examples illustrate the efficiency and importance of using the stochastic arithmetic in place of the floating-point arithmetic.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2016/JFSVA-00284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2016/JFSVA-00284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation
In this paper, a reliable scheme is proposed to solve fuzzy differential equations by fuzzy Runge-Kutta method of order $m$. For this purpose, the stochastic arithmetic and CESTAC method are applied to validate the results. In order to implement the C++ codes, the CADNA library is used. In this case, the optimal step size is found. The examples illustrate the efficiency and importance of using the stochastic arithmetic in place of the floating-point arithmetic.