SSVEP检测的多目标优化

Yue Zhang, Zhiqiang Zhang, Shengquan Xie
{"title":"SSVEP检测的多目标优化","authors":"Yue Zhang, Zhiqiang Zhang, Shengquan Xie","doi":"10.1109/BSN51625.2021.9507041","DOIUrl":null,"url":null,"abstract":"Data-driven spatial filtering approaches have been widely used for steady-state visual evoked potentials (SSVEPs) detection toward the brain-computer interface (BCI). The existing methods tend to learn the spatial filter parameters for a certain stimulation frequency only using the training trials from the same stimulus, which may ignore the information from the other stimuli. In this paper, we propose a novel multi-objective optimisation-based spatial filtering method for enhancing SSVEP recognition. Spatial filters are defined via maximising the correlation among the training data from the same stimulus whilst minimising the correlation from different stimuli. We collected SSVEP signals using 16 electrodes from six healthy subjects at 4 different stimulation frequencies: 14Hz, 15Hz, 16Hz, and 17Hz. The experimental study was implemented, and our method can achieve an average recognition accuracy of 94.17%, which illustrates its effectiveness.","PeriodicalId":181520,"journal":{"name":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Objective Optimisation for SSVEP Detection\",\"authors\":\"Yue Zhang, Zhiqiang Zhang, Shengquan Xie\",\"doi\":\"10.1109/BSN51625.2021.9507041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven spatial filtering approaches have been widely used for steady-state visual evoked potentials (SSVEPs) detection toward the brain-computer interface (BCI). The existing methods tend to learn the spatial filter parameters for a certain stimulation frequency only using the training trials from the same stimulus, which may ignore the information from the other stimuli. In this paper, we propose a novel multi-objective optimisation-based spatial filtering method for enhancing SSVEP recognition. Spatial filters are defined via maximising the correlation among the training data from the same stimulus whilst minimising the correlation from different stimuli. We collected SSVEP signals using 16 electrodes from six healthy subjects at 4 different stimulation frequencies: 14Hz, 15Hz, 16Hz, and 17Hz. The experimental study was implemented, and our method can achieve an average recognition accuracy of 94.17%, which illustrates its effectiveness.\",\"PeriodicalId\":181520,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN51625.2021.9507041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN51625.2021.9507041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据驱动的空间滤波方法已广泛应用于脑机接口稳态视觉诱发电位(SSVEPs)检测。现有的方法往往只使用同一刺激的训练试验来学习特定刺激频率下的空间滤波参数,而忽略了来自其他刺激的信息。本文提出了一种新的基于多目标优化的空间滤波方法来增强对SSVEP的识别。空间滤波器是通过最大化来自相同刺激的训练数据之间的相关性,同时最小化来自不同刺激的相关性来定义的。我们使用来自6名健康受试者的16个电极在4种不同的刺激频率(14Hz、15Hz、16Hz和17Hz)下收集SSVEP信号。实验结果表明,该方法的平均识别准确率为94.17%,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Optimisation for SSVEP Detection
Data-driven spatial filtering approaches have been widely used for steady-state visual evoked potentials (SSVEPs) detection toward the brain-computer interface (BCI). The existing methods tend to learn the spatial filter parameters for a certain stimulation frequency only using the training trials from the same stimulus, which may ignore the information from the other stimuli. In this paper, we propose a novel multi-objective optimisation-based spatial filtering method for enhancing SSVEP recognition. Spatial filters are defined via maximising the correlation among the training data from the same stimulus whilst minimising the correlation from different stimuli. We collected SSVEP signals using 16 electrodes from six healthy subjects at 4 different stimulation frequencies: 14Hz, 15Hz, 16Hz, and 17Hz. The experimental study was implemented, and our method can achieve an average recognition accuracy of 94.17%, which illustrates its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信