电动增压柴油机解耦控制

Dezong Zhao, E. Winward, Zhijia Yang, R. Stobart, T. Steffen
{"title":"电动增压柴油机解耦控制","authors":"Dezong Zhao, E. Winward, Zhijia Yang, R. Stobart, T. Steffen","doi":"10.1109/ACC.2016.7525583","DOIUrl":null,"url":null,"abstract":"Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as a promising solution for its advantages in engine downsizing and exhaust gas energy recovery. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The control of the energy flows in an electrified turbocharged diesel engine (ETDE) is still in its infancy. Developing a promising multi-input multi-output (MIMO) control strategy is essential in exploring the maximum benefits of electrified turbocharger. In this paper, the dynamics in an ETDE, especially the couplings among multiple loops in the air path are analyzed. Based on the analysis, a model-based MIMO decoupling control framework is designed to regulate the air path dynamics. The proposed control strategy can achieve fast and accurate tracking on selected control variables and is successfully validated on a physical model in simulations.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Decoupling control of electrified turbocharged diesel engines\",\"authors\":\"Dezong Zhao, E. Winward, Zhijia Yang, R. Stobart, T. Steffen\",\"doi\":\"10.1109/ACC.2016.7525583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as a promising solution for its advantages in engine downsizing and exhaust gas energy recovery. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The control of the energy flows in an electrified turbocharged diesel engine (ETDE) is still in its infancy. Developing a promising multi-input multi-output (MIMO) control strategy is essential in exploring the maximum benefits of electrified turbocharger. In this paper, the dynamics in an ETDE, especially the couplings among multiple loops in the air path are analyzed. Based on the analysis, a model-based MIMO decoupling control framework is designed to regulate the air path dynamics. The proposed control strategy can achieve fast and accurate tracking on selected control variables and is successfully validated on a physical model in simulations.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7525583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

发动机电气化是提高发动机燃油效率的关键技术,其中电气化涡轮增压器因其在发动机小型化和废气能量回收方面的优势而被认为是一种很有前途的解决方案。通过在涡轮增压器上安装电子设备,多余的能量可以被捕获、储存和再利用。电动涡轮增压柴油发动机(ETDE)的能量流控制仍处于起步阶段。开发一种有前途的多输入多输出(MIMO)控制策略对于探索电气化涡轮增压器的最大效益至关重要。本文分析了ETDE的动力学特性,特别是气路中多回路之间的耦合问题。在此基础上,设计了一种基于模型的多输入多输出解耦控制框架。所提出的控制策略能够对选定的控制变量实现快速准确的跟踪,并在物理模型上进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupling control of electrified turbocharged diesel engines
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as a promising solution for its advantages in engine downsizing and exhaust gas energy recovery. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The control of the energy flows in an electrified turbocharged diesel engine (ETDE) is still in its infancy. Developing a promising multi-input multi-output (MIMO) control strategy is essential in exploring the maximum benefits of electrified turbocharger. In this paper, the dynamics in an ETDE, especially the couplings among multiple loops in the air path are analyzed. Based on the analysis, a model-based MIMO decoupling control framework is designed to regulate the air path dynamics. The proposed control strategy can achieve fast and accurate tracking on selected control variables and is successfully validated on a physical model in simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信