基于涡轮的生物质热电联产电厂生命周期的环境影响

P. Bartocci, G. Bidini, P. Laranci, Mauro Zampilli, M. D'Amico, F. Fantozzi
{"title":"基于涡轮的生物质热电联产电厂生命周期的环境影响","authors":"P. Bartocci, G. Bidini, P. Laranci, Mauro Zampilli, M. D'Amico, F. Fantozzi","doi":"10.1115/GT2018-76856","DOIUrl":null,"url":null,"abstract":"Biomass CHP plants represent a viable option to produce distributed energy in a sustainable way when the overall environmental benefit is appraised on the whole life cycle. CHP plants for bioenergy conversion may consist of a gasification (IGC – Integrated Gasification Cycle) or pyrolysis (IPRP – Integrated Pyrolysis Regenerated Plant) pre-treatment unit, producing a syngas that feeds an internal combustion engine or a gas turbine. The external combustion mode is also an option, where exhaust gases from biomass combustion provide heat to either a traditional steam cycle, an ORC (Organic Rankine Cycle) or an EFGT (Externally Fired Gas Turbine). This paper focuses specifically on turbines based technologies and provides a LCA comparison of 4 main technologies suitable for the small scale, namely: EFMGT, ORC, IGC and IPRP. The comparison is carried out considering 3 different biomasses, namely a Short Rotation Forestry, an agricultural residue and an agro industrial residue at 2 different scales: micro scale (100 kw) and small scale (1 MW), being higher scales barely sustainable on the life cycle. From data derived from the Literature or experimental campaign (tests at the IPRP and gasification facilities at the University Perugia), LCA analysis were carried out and the different scenarios were compared based on two impact categories: global warming and human health. Input and output of the derived LCI are referred to the functional unit of 1 kWh electric for upstream, core and downstream processes. Results show the contribution of main processes and are discussed comparing scale, technology and feedstock.","PeriodicalId":131179,"journal":{"name":"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Environmental Impact on the Life Cycle for Turbine Based Biomass CHP Plants\",\"authors\":\"P. Bartocci, G. Bidini, P. Laranci, Mauro Zampilli, M. D'Amico, F. Fantozzi\",\"doi\":\"10.1115/GT2018-76856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomass CHP plants represent a viable option to produce distributed energy in a sustainable way when the overall environmental benefit is appraised on the whole life cycle. CHP plants for bioenergy conversion may consist of a gasification (IGC – Integrated Gasification Cycle) or pyrolysis (IPRP – Integrated Pyrolysis Regenerated Plant) pre-treatment unit, producing a syngas that feeds an internal combustion engine or a gas turbine. The external combustion mode is also an option, where exhaust gases from biomass combustion provide heat to either a traditional steam cycle, an ORC (Organic Rankine Cycle) or an EFGT (Externally Fired Gas Turbine). This paper focuses specifically on turbines based technologies and provides a LCA comparison of 4 main technologies suitable for the small scale, namely: EFMGT, ORC, IGC and IPRP. The comparison is carried out considering 3 different biomasses, namely a Short Rotation Forestry, an agricultural residue and an agro industrial residue at 2 different scales: micro scale (100 kw) and small scale (1 MW), being higher scales barely sustainable on the life cycle. From data derived from the Literature or experimental campaign (tests at the IPRP and gasification facilities at the University Perugia), LCA analysis were carried out and the different scenarios were compared based on two impact categories: global warming and human health. Input and output of the derived LCI are referred to the functional unit of 1 kWh electric for upstream, core and downstream processes. Results show the contribution of main processes and are discussed comparing scale, technology and feedstock.\",\"PeriodicalId\":131179,\"journal\":{\"name\":\"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当对整个生命周期的整体环境效益进行评估时,生物质热电联产电厂代表了以可持续方式生产分布式能源的可行选择。用于生物能源转换的热电联产工厂可能包括气化(IGC -综合气化循环)或热解(IPRP -综合热解再生厂)预处理单元,产生供内燃机或燃气轮机使用的合成气。外部燃烧模式也是一种选择,其中生物质燃烧产生的废气为传统的蒸汽循环,ORC(有机朗肯循环)或EFGT(外部燃烧燃气轮机)提供热量。本文重点研究了基于涡轮机的技术,并对适用于小规模的4种主要技术,即EFMGT、ORC、IGC和IPRP进行了LCA比较。比较考虑了3种不同的生物质,即短期轮作林业、农业残渣和农工残渣,在2种不同的尺度下进行:微型尺度(100千瓦)和小型尺度(1兆瓦),在生命周期中,较高的尺度几乎不可持续。根据文献或实验运动(在佩鲁贾大学的IPRP和气化设施进行的测试)获得的数据,进行了LCA分析,并根据两个影响类别(全球变暖和人类健康)对不同情景进行了比较。推导出的LCI的输入和输出是指上游、核心和下游工艺的1kwh电的功能单位。结果表明了主要工艺的贡献,并对规模、工艺和原料进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental Impact on the Life Cycle for Turbine Based Biomass CHP Plants
Biomass CHP plants represent a viable option to produce distributed energy in a sustainable way when the overall environmental benefit is appraised on the whole life cycle. CHP plants for bioenergy conversion may consist of a gasification (IGC – Integrated Gasification Cycle) or pyrolysis (IPRP – Integrated Pyrolysis Regenerated Plant) pre-treatment unit, producing a syngas that feeds an internal combustion engine or a gas turbine. The external combustion mode is also an option, where exhaust gases from biomass combustion provide heat to either a traditional steam cycle, an ORC (Organic Rankine Cycle) or an EFGT (Externally Fired Gas Turbine). This paper focuses specifically on turbines based technologies and provides a LCA comparison of 4 main technologies suitable for the small scale, namely: EFMGT, ORC, IGC and IPRP. The comparison is carried out considering 3 different biomasses, namely a Short Rotation Forestry, an agricultural residue and an agro industrial residue at 2 different scales: micro scale (100 kw) and small scale (1 MW), being higher scales barely sustainable on the life cycle. From data derived from the Literature or experimental campaign (tests at the IPRP and gasification facilities at the University Perugia), LCA analysis were carried out and the different scenarios were compared based on two impact categories: global warming and human health. Input and output of the derived LCI are referred to the functional unit of 1 kWh electric for upstream, core and downstream processes. Results show the contribution of main processes and are discussed comparing scale, technology and feedstock.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信