基于浏览器的图形双曲可视化

Jacob Miller, S. Kobourov, Vahan Huroyan
{"title":"基于浏览器的图形双曲可视化","authors":"Jacob Miller, S. Kobourov, Vahan Huroyan","doi":"10.48550/arXiv.2205.08028","DOIUrl":null,"url":null,"abstract":"Hyperbolic geometry offers a natural ‘focus+context’ for data visualization and has been shown to underlie real-world complex networks. However, current hyperbolic network visualization approaches are limited to special types of networks and do not scale to large datasets. With this in mind, we designed, implemented, and analyzed three methods for hyperbolic visualization of networks in the browser based on inverse projections, generalized force-directed algorithms, and hyperbolic multi-dimensional scaling (H-MDS). A comparison with Euclidean MDS shows that H - MDS produces embeddings with lower distortion for several types of networks. All three methods can handle node-link representations and are available in fully functional web-based systems.","PeriodicalId":117284,"journal":{"name":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Browser-based Hyperbolic Visualization of Graphs\",\"authors\":\"Jacob Miller, S. Kobourov, Vahan Huroyan\",\"doi\":\"10.48550/arXiv.2205.08028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperbolic geometry offers a natural ‘focus+context’ for data visualization and has been shown to underlie real-world complex networks. However, current hyperbolic network visualization approaches are limited to special types of networks and do not scale to large datasets. With this in mind, we designed, implemented, and analyzed three methods for hyperbolic visualization of networks in the browser based on inverse projections, generalized force-directed algorithms, and hyperbolic multi-dimensional scaling (H-MDS). A comparison with Euclidean MDS shows that H - MDS produces embeddings with lower distortion for several types of networks. All three methods can handle node-link representations and are available in fully functional web-based systems.\",\"PeriodicalId\":117284,\"journal\":{\"name\":\"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.08028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.08028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

双曲几何为数据可视化提供了一个自然的“焦点+上下文”,并已被证明是现实世界复杂网络的基础。然而,目前的双曲网络可视化方法仅限于特殊类型的网络,不能扩展到大型数据集。考虑到这一点,我们设计、实现并分析了三种基于逆投影、广义力导向算法和双曲多维缩放(H-MDS)的浏览器网络双曲可视化方法。与欧几里得MDS的比较表明,H - MDS对几种类型的网络产生了较低失真的嵌入。这三种方法都可以处理节点链接表示,并且可以在功能齐全的基于web的系统中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Browser-based Hyperbolic Visualization of Graphs
Hyperbolic geometry offers a natural ‘focus+context’ for data visualization and has been shown to underlie real-world complex networks. However, current hyperbolic network visualization approaches are limited to special types of networks and do not scale to large datasets. With this in mind, we designed, implemented, and analyzed three methods for hyperbolic visualization of networks in the browser based on inverse projections, generalized force-directed algorithms, and hyperbolic multi-dimensional scaling (H-MDS). A comparison with Euclidean MDS shows that H - MDS produces embeddings with lower distortion for several types of networks. All three methods can handle node-link representations and are available in fully functional web-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信