{"title":"基于格理论的神经/模糊计算","authors":"V. Kaburlasos","doi":"10.4018/978-1-59904-849-9.CH181","DOIUrl":null,"url":null,"abstract":"Computational Intelligence (CI) consists of an evolving collection of methodologies often inspired from nature (Bonissone, Chen, Goebel & Khedkar, 1999, Fogel, 1999, Pedrycz, 1998). Two popular methodologies of CI include neural networks and fuzzy systems. Lately, a unification was proposed in CI, at a “data level”, based on lattice theory (Kaburlasos, 2006). More specifically, it was shown that several types of data including vectors of (fuzzy) numbers, (fuzzy) sets, 1D/2D (real) functions, graphs/trees, (strings of) symbols, etc. are partially(lattice)-ordered. In conclusion, a unified cross-fertilization was proposed for knowledge representation and modeling based on lattice theory with emphasis on clustering, classification, and regression applications (Kaburlasos, 2006). Of particular interest in practice is the totally-ordered lattice (R,≤) of real numbers, which has emerged historically from the conventional measurement process of successive comparisons. It is known that (R,≤) gives rise to a hierarchy of lattices including the lattice (F,≤) of fuzzy interval numbers, or FINs for short (Papadakis & Kaburlasos, 2007). This article shows extensions of two popular neural networks, i.e. fuzzy-ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds & Rosen 1992) and self-organizing map (Kohonen, 1995), as well as an extension of conventional fuzzy inference systems (Mamdani & Assilian, 1975), based on FINs. Advantages of the aforementioned extensions include both a capacity to rigorously deal with nonnumeric input data and a capacity to introduce tunable nonlinearities. Rule induction is yet another advantage.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural/Fuzzy Computing Based on Lattice Theory\",\"authors\":\"V. Kaburlasos\",\"doi\":\"10.4018/978-1-59904-849-9.CH181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational Intelligence (CI) consists of an evolving collection of methodologies often inspired from nature (Bonissone, Chen, Goebel & Khedkar, 1999, Fogel, 1999, Pedrycz, 1998). Two popular methodologies of CI include neural networks and fuzzy systems. Lately, a unification was proposed in CI, at a “data level”, based on lattice theory (Kaburlasos, 2006). More specifically, it was shown that several types of data including vectors of (fuzzy) numbers, (fuzzy) sets, 1D/2D (real) functions, graphs/trees, (strings of) symbols, etc. are partially(lattice)-ordered. In conclusion, a unified cross-fertilization was proposed for knowledge representation and modeling based on lattice theory with emphasis on clustering, classification, and regression applications (Kaburlasos, 2006). Of particular interest in practice is the totally-ordered lattice (R,≤) of real numbers, which has emerged historically from the conventional measurement process of successive comparisons. It is known that (R,≤) gives rise to a hierarchy of lattices including the lattice (F,≤) of fuzzy interval numbers, or FINs for short (Papadakis & Kaburlasos, 2007). This article shows extensions of two popular neural networks, i.e. fuzzy-ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds & Rosen 1992) and self-organizing map (Kohonen, 1995), as well as an extension of conventional fuzzy inference systems (Mamdani & Assilian, 1975), based on FINs. Advantages of the aforementioned extensions include both a capacity to rigorously deal with nonnumeric input data and a capacity to introduce tunable nonlinearities. Rule induction is yet another advantage.\",\"PeriodicalId\":320314,\"journal\":{\"name\":\"Encyclopedia of Artificial Intelligence\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-59904-849-9.CH181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Intelligence (CI) consists of an evolving collection of methodologies often inspired from nature (Bonissone, Chen, Goebel & Khedkar, 1999, Fogel, 1999, Pedrycz, 1998). Two popular methodologies of CI include neural networks and fuzzy systems. Lately, a unification was proposed in CI, at a “data level”, based on lattice theory (Kaburlasos, 2006). More specifically, it was shown that several types of data including vectors of (fuzzy) numbers, (fuzzy) sets, 1D/2D (real) functions, graphs/trees, (strings of) symbols, etc. are partially(lattice)-ordered. In conclusion, a unified cross-fertilization was proposed for knowledge representation and modeling based on lattice theory with emphasis on clustering, classification, and regression applications (Kaburlasos, 2006). Of particular interest in practice is the totally-ordered lattice (R,≤) of real numbers, which has emerged historically from the conventional measurement process of successive comparisons. It is known that (R,≤) gives rise to a hierarchy of lattices including the lattice (F,≤) of fuzzy interval numbers, or FINs for short (Papadakis & Kaburlasos, 2007). This article shows extensions of two popular neural networks, i.e. fuzzy-ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds & Rosen 1992) and self-organizing map (Kohonen, 1995), as well as an extension of conventional fuzzy inference systems (Mamdani & Assilian, 1975), based on FINs. Advantages of the aforementioned extensions include both a capacity to rigorously deal with nonnumeric input data and a capacity to introduce tunable nonlinearities. Rule induction is yet another advantage.