基于非周期反卷积模型的最大熵图像恢复算法

Shi Dong-cheng, Han Liqiang, W. Hongzhi
{"title":"基于非周期反卷积模型的最大熵图像恢复算法","authors":"Shi Dong-cheng, Han Liqiang, W. Hongzhi","doi":"10.1109/ICOSP.1998.770791","DOIUrl":null,"url":null,"abstract":"We describe the aperiodic matrix model of deconvolution. Its kernel matrix is high order, and we cannot calculate this large matrix in a practical image restoration problem directly, but it can be handled by the DFT. We show a kind of maximum entropy algorithm for image restoration, based on the aperiodic matrix model, FFT algorithm and conjugate gradient algorithm (CGA). In experimental results its total computational burden and the memory requirement is moderate. It can run on a common PC computer.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A maximum entropy algorithm based on the aperiodic model of deconvolution for image restoration\",\"authors\":\"Shi Dong-cheng, Han Liqiang, W. Hongzhi\",\"doi\":\"10.1109/ICOSP.1998.770791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the aperiodic matrix model of deconvolution. Its kernel matrix is high order, and we cannot calculate this large matrix in a practical image restoration problem directly, but it can be handled by the DFT. We show a kind of maximum entropy algorithm for image restoration, based on the aperiodic matrix model, FFT algorithm and conjugate gradient algorithm (CGA). In experimental results its total computational burden and the memory requirement is moderate. It can run on a common PC computer.\",\"PeriodicalId\":145700,\"journal\":{\"name\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.1998.770791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了反卷积的非周期矩阵模型。它的核矩阵是高阶的,在实际的图像恢复问题中我们不能直接计算这个大矩阵,但可以用DFT来处理。提出了一种基于非周期矩阵模型、FFT算法和共轭梯度算法(CGA)的最大熵图像恢复算法。实验结果表明,该算法的总计算量和内存需求适中。它可以在普通的个人电脑上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A maximum entropy algorithm based on the aperiodic model of deconvolution for image restoration
We describe the aperiodic matrix model of deconvolution. Its kernel matrix is high order, and we cannot calculate this large matrix in a practical image restoration problem directly, but it can be handled by the DFT. We show a kind of maximum entropy algorithm for image restoration, based on the aperiodic matrix model, FFT algorithm and conjugate gradient algorithm (CGA). In experimental results its total computational burden and the memory requirement is moderate. It can run on a common PC computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信