利用机器学习实现纳米磁性材料的天线设计

Carmine Gianfagna, M. Swaminathan, P. Raj, R. Tummala, Giulio Antonini
{"title":"利用机器学习实现纳米磁性材料的天线设计","authors":"Carmine Gianfagna, M. Swaminathan, P. Raj, R. Tummala, Giulio Antonini","doi":"10.1109/NMDC.2015.7439256","DOIUrl":null,"url":null,"abstract":"A machine learning approach to design with magneto dielectric nano-composite (MDNC) substrate for planar inverted-F antenna (PIFA) is presented. A new mixing rule model has been developed. A database of material properties has been created using several particle radius and volume fraction. A second database built with antenna simulations has been developed to complete the machine learning dataset. It is shown that, starting from particle radius and volume fraction of the nano-magnetic material, it is possible to calculate the antenna parameters like gain, bandwidth, radiation efficiency, resonant frequency, and viceversa with good precision by using machine learning techniques.","PeriodicalId":181412,"journal":{"name":"2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Enabling antenna design with nano-magnetic materials using machine learning\",\"authors\":\"Carmine Gianfagna, M. Swaminathan, P. Raj, R. Tummala, Giulio Antonini\",\"doi\":\"10.1109/NMDC.2015.7439256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A machine learning approach to design with magneto dielectric nano-composite (MDNC) substrate for planar inverted-F antenna (PIFA) is presented. A new mixing rule model has been developed. A database of material properties has been created using several particle radius and volume fraction. A second database built with antenna simulations has been developed to complete the machine learning dataset. It is shown that, starting from particle radius and volume fraction of the nano-magnetic material, it is possible to calculate the antenna parameters like gain, bandwidth, radiation efficiency, resonant frequency, and viceversa with good precision by using machine learning techniques.\",\"PeriodicalId\":181412,\"journal\":{\"name\":\"2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC.2015.7439256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2015.7439256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于机器学习的磁介质纳米复合材料(MDNC)基板平面倒f天线(PIFA)设计方法。提出了一种新的混合规则模型。使用几个粒子半径和体积分数创建了一个材料属性数据库。用天线模拟建立的第二个数据库已经开发出来,以完成机器学习数据集。研究表明,利用机器学习技术,从纳米磁性材料的粒子半径和体积分数出发,可以计算出增益、带宽、辐射效率、谐振频率等天线参数,并且精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling antenna design with nano-magnetic materials using machine learning
A machine learning approach to design with magneto dielectric nano-composite (MDNC) substrate for planar inverted-F antenna (PIFA) is presented. A new mixing rule model has been developed. A database of material properties has been created using several particle radius and volume fraction. A second database built with antenna simulations has been developed to complete the machine learning dataset. It is shown that, starting from particle radius and volume fraction of the nano-magnetic material, it is possible to calculate the antenna parameters like gain, bandwidth, radiation efficiency, resonant frequency, and viceversa with good precision by using machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信