多传感器时间序列分析的图正则化耦合光谱解混

N. Yokoya, Xiaoxiang Zhu, A. Plaza
{"title":"多传感器时间序列分析的图正则化耦合光谱解混","authors":"N. Yokoya, Xiaoxiang Zhu, A. Plaza","doi":"10.1109/WHISPERS.2016.8071760","DOIUrl":null,"url":null,"abstract":"A new methodology that solves unmixing problems involving a set of multisensor time-series spectral images is proposed in order to understand dynamic changes of the surface at a subpixel scale. The proposed methodology couples multiple unmixing problems via regularization on graphs between the multisensor time-series data to obtain robust and stable unmixing solutions beyond data modalities owing to different sensor characteristics and the effects of non-optimal atmospheric correction. A synthetic dataset that includes seasonal and trend changes on the surface and the residuals of non-optimal atmospheric correction is used for numerical validation. Experimental results demonstrate the effectiveness of the proposed methodology.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-regularized coupled spectral unmixing for multisensor time-series analysis\",\"authors\":\"N. Yokoya, Xiaoxiang Zhu, A. Plaza\",\"doi\":\"10.1109/WHISPERS.2016.8071760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new methodology that solves unmixing problems involving a set of multisensor time-series spectral images is proposed in order to understand dynamic changes of the surface at a subpixel scale. The proposed methodology couples multiple unmixing problems via regularization on graphs between the multisensor time-series data to obtain robust and stable unmixing solutions beyond data modalities owing to different sensor characteristics and the effects of non-optimal atmospheric correction. A synthetic dataset that includes seasonal and trend changes on the surface and the residuals of non-optimal atmospheric correction is used for numerical validation. Experimental results demonstrate the effectiveness of the proposed methodology.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了在亚像素尺度上了解地表的动态变化,提出了一种新的多传感器时间序列光谱图像解混方法。该方法通过对多传感器时间序列数据之间的图进行正则化,将多个解混问题耦合在一起,从而在不同传感器特性和非最优大气校正的影响下,获得超越数据模态的鲁棒稳定解混方案。利用一个包含地表季节和趋势变化以及非最优大气校正残差的合成数据集进行数值验证。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-regularized coupled spectral unmixing for multisensor time-series analysis
A new methodology that solves unmixing problems involving a set of multisensor time-series spectral images is proposed in order to understand dynamic changes of the surface at a subpixel scale. The proposed methodology couples multiple unmixing problems via regularization on graphs between the multisensor time-series data to obtain robust and stable unmixing solutions beyond data modalities owing to different sensor characteristics and the effects of non-optimal atmospheric correction. A synthetic dataset that includes seasonal and trend changes on the surface and the residuals of non-optimal atmospheric correction is used for numerical validation. Experimental results demonstrate the effectiveness of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信