每小时服务器工作负载预测,最多提前168小时使用季节性ARIMA模型

Van Giang Tran, V. Debusschere, S. Bacha
{"title":"每小时服务器工作负载预测,最多提前168小时使用季节性ARIMA模型","authors":"Van Giang Tran, V. Debusschere, S. Bacha","doi":"10.1109/ICIT.2012.6210091","DOIUrl":null,"url":null,"abstract":"Data center workload prediction is important to take decisions in resources management system. Seasonal ARIMA model provide a good server workload methodology for the server workload forecasting. A large set of our experiments confirm that it has high performance, scalability and reliability and will bee integrated in our system. This paper presents a general expression in development of our forecast model in the project EnergeTic-FUI, France.","PeriodicalId":365141,"journal":{"name":"2012 IEEE International Conference on Industrial Technology","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Hourly server workload forecasting up to 168 hours ahead using Seasonal ARIMA model\",\"authors\":\"Van Giang Tran, V. Debusschere, S. Bacha\",\"doi\":\"10.1109/ICIT.2012.6210091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data center workload prediction is important to take decisions in resources management system. Seasonal ARIMA model provide a good server workload methodology for the server workload forecasting. A large set of our experiments confirm that it has high performance, scalability and reliability and will bee integrated in our system. This paper presents a general expression in development of our forecast model in the project EnergeTic-FUI, France.\",\"PeriodicalId\":365141,\"journal\":{\"name\":\"2012 IEEE International Conference on Industrial Technology\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2012.6210091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2012.6210091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

数据中心工作负载预测对资源管理系统的决策具有重要意义。季节性ARIMA模型为服务器工作负载预测提供了一种良好的服务器工作负载方法。经过大量的实验验证,该算法具有较高的性能、可扩展性和可靠性,可以集成到我们的系统中。本文介绍了在法国EnergeTic-FUI项目中我们的预测模型开发的一般表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hourly server workload forecasting up to 168 hours ahead using Seasonal ARIMA model
Data center workload prediction is important to take decisions in resources management system. Seasonal ARIMA model provide a good server workload methodology for the server workload forecasting. A large set of our experiments confirm that it has high performance, scalability and reliability and will bee integrated in our system. This paper presents a general expression in development of our forecast model in the project EnergeTic-FUI, France.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信