无单元c-ran系统中检测的集合理论学习

Daniyal Amir Awan, R. Cavalcante, Z. Utkovski, S. Stańczak
{"title":"无单元c-ran系统中检测的集合理论学习","authors":"Daniyal Amir Awan, R. Cavalcante, Z. Utkovski, S. Stańczak","doi":"10.1109/GLOBALSIP.2018.8646489","DOIUrl":null,"url":null,"abstract":"Cloud-radio access network (C-RAN) can enable cell-less operation by connecting distributed remote radio heads (RRHs) via fronthaul links to a powerful central unit. In the conventional C-RAN, baseband signals are forwarded after quantization/compression to the central unit for centralized processing/detection in order to keep the complexity of the RRHs low. However, the limited capacity of the fronthaul is a significant bottleneck that prevents C-RAN from supporting large systems (e.g. massive machine-type communications (mMTC)). We propose a learning-based C-RAN in which the detection is performed locally at each RRH and, in contrast to the conventional C-RAN, only the likelihood information is conveyed to the central unit. To this end, we develop a general set-theoretic learning method for estimating likelihood functions. Our method can be used to extend existing detection methods to the C-RAN setting.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SET-THEORETIC LEARNING FOR DETECTION IN CELL-LESS C-RAN SYSTEMS\",\"authors\":\"Daniyal Amir Awan, R. Cavalcante, Z. Utkovski, S. Stańczak\",\"doi\":\"10.1109/GLOBALSIP.2018.8646489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud-radio access network (C-RAN) can enable cell-less operation by connecting distributed remote radio heads (RRHs) via fronthaul links to a powerful central unit. In the conventional C-RAN, baseband signals are forwarded after quantization/compression to the central unit for centralized processing/detection in order to keep the complexity of the RRHs low. However, the limited capacity of the fronthaul is a significant bottleneck that prevents C-RAN from supporting large systems (e.g. massive machine-type communications (mMTC)). We propose a learning-based C-RAN in which the detection is performed locally at each RRH and, in contrast to the conventional C-RAN, only the likelihood information is conveyed to the central unit. To this end, we develop a general set-theoretic learning method for estimating likelihood functions. Our method can be used to extend existing detection methods to the C-RAN setting.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBALSIP.2018.8646489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

云无线电接入网(C-RAN)可以通过前传链路将分布式远程无线电头(RRHs)连接到一个强大的中央单元,从而实现无蜂窝操作。在传统的C-RAN中,基带信号经过量化/压缩后转发到中央单元进行集中处理/检测,以降低rrh的复杂度。然而,有限的前传容量是阻碍C-RAN支持大型系统(例如大规模机器类型通信(mMTC))的重要瓶颈。我们提出了一种基于学习的C-RAN,其中在每个RRH局部执行检测,与传统的C-RAN相比,只有可能性信息被传递到中心单元。为此,我们开发了一种通用的集论学习方法来估计似然函数。我们的方法可以将现有的检测方法扩展到C-RAN设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SET-THEORETIC LEARNING FOR DETECTION IN CELL-LESS C-RAN SYSTEMS
Cloud-radio access network (C-RAN) can enable cell-less operation by connecting distributed remote radio heads (RRHs) via fronthaul links to a powerful central unit. In the conventional C-RAN, baseband signals are forwarded after quantization/compression to the central unit for centralized processing/detection in order to keep the complexity of the RRHs low. However, the limited capacity of the fronthaul is a significant bottleneck that prevents C-RAN from supporting large systems (e.g. massive machine-type communications (mMTC)). We propose a learning-based C-RAN in which the detection is performed locally at each RRH and, in contrast to the conventional C-RAN, only the likelihood information is conveyed to the central unit. To this end, we develop a general set-theoretic learning method for estimating likelihood functions. Our method can be used to extend existing detection methods to the C-RAN setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信