{"title":"l -半胱氨酸- H2SeO3和l -半胱氨酸- h2seo4体系中氢键相互作用的DFT研究","authors":"A. Pankratov, N. A. Bychkov, O. Tsivileva","doi":"10.4018/ijcce.2011070105","DOIUrl":null,"url":null,"abstract":"Using the density functional theory method at the B3LYP/6-31G(d,p) level of theory, the formation of hydrogen-bonded complexes of L-cysteine with selenious and selenic acids has been studied. In both cases of selenium-containing acids, the complexes occur preferably by cysteine carboxylic group, therewith the enthalpy of formation values consist from –19 to –21 kcal/mol, and free energy from –6 to –9 kcal/mol. Probably, the initial act of interaction in the system hydroxyl-containing selenium compound - a-amino acid, proceeding with mutual orientation of the reactants molecules and intermolecular hydrogen bonds formation, serves as a prerequisite for the thiol group capability of participating in the subsequent stages (including more completed transformations) of biologically important reactions.","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Hydrogen-Bonded Interactions in the Systems L-Cysteine - H2SeO3 and L-Cysteine -H2SeO4: A DFT Study\",\"authors\":\"A. Pankratov, N. A. Bychkov, O. Tsivileva\",\"doi\":\"10.4018/ijcce.2011070105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the density functional theory method at the B3LYP/6-31G(d,p) level of theory, the formation of hydrogen-bonded complexes of L-cysteine with selenious and selenic acids has been studied. In both cases of selenium-containing acids, the complexes occur preferably by cysteine carboxylic group, therewith the enthalpy of formation values consist from –19 to –21 kcal/mol, and free energy from –6 to –9 kcal/mol. Probably, the initial act of interaction in the system hydroxyl-containing selenium compound - a-amino acid, proceeding with mutual orientation of the reactants molecules and intermolecular hydrogen bonds formation, serves as a prerequisite for the thiol group capability of participating in the subsequent stages (including more completed transformations) of biologically important reactions.\",\"PeriodicalId\":132974,\"journal\":{\"name\":\"Int. J. Chemoinformatics Chem. Eng.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Chemoinformatics Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcce.2011070105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcce.2011070105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogen-Bonded Interactions in the Systems L-Cysteine - H2SeO3 and L-Cysteine -H2SeO4: A DFT Study
Using the density functional theory method at the B3LYP/6-31G(d,p) level of theory, the formation of hydrogen-bonded complexes of L-cysteine with selenious and selenic acids has been studied. In both cases of selenium-containing acids, the complexes occur preferably by cysteine carboxylic group, therewith the enthalpy of formation values consist from –19 to –21 kcal/mol, and free energy from –6 to –9 kcal/mol. Probably, the initial act of interaction in the system hydroxyl-containing selenium compound - a-amino acid, proceeding with mutual orientation of the reactants molecules and intermolecular hydrogen bonds formation, serves as a prerequisite for the thiol group capability of participating in the subsequent stages (including more completed transformations) of biologically important reactions.