使用自回归和随机效应模型对重复二进制数据进行纵向分析

M. Aitkin, M. Alfò
{"title":"使用自回归和随机效应模型对重复二进制数据进行纵向分析","authors":"M. Aitkin, M. Alfò","doi":"10.1191/1471082X03st061oa","DOIUrl":null,"url":null,"abstract":"In this paper we extend random coefficient models for binary repeated responses to include serial dependence of Markovian form, with the aim of defining a general association structure among responses recorded on the same individual. We do not adopt a parametric specification for the random coefficients distribution and this allows us to overcome inconsistencies due to misspecification of this component. Model parameters are estimated by means of an EM algorithm for nonparametric maximum likelihood (NPML), which is extended to deal with serial correlation among repeated measures, with an explicit focus on those situations where short individual time series have been observed. The approach is described by presenting a reanalysis of the well-known Muscatine (Iowa) longitudinal study on childhood obesity.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Longitudinal analysis of repeated binary data using autoregressive and random effect modelling\",\"authors\":\"M. Aitkin, M. Alfò\",\"doi\":\"10.1191/1471082X03st061oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend random coefficient models for binary repeated responses to include serial dependence of Markovian form, with the aim of defining a general association structure among responses recorded on the same individual. We do not adopt a parametric specification for the random coefficients distribution and this allows us to overcome inconsistencies due to misspecification of this component. Model parameters are estimated by means of an EM algorithm for nonparametric maximum likelihood (NPML), which is extended to deal with serial correlation among repeated measures, with an explicit focus on those situations where short individual time series have been observed. The approach is described by presenting a reanalysis of the well-known Muscatine (Iowa) longitudinal study on childhood obesity.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X03st061oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st061oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文将二元重复响应的随机系数模型扩展到包含马尔可夫形式的序列依赖,目的是定义同一个体上记录的响应之间的一般关联结构。我们不采用随机系数分布的参数规范,这使我们能够克服由于该组件的错误规范而导致的不一致。通过非参数最大似然(NPML)的EM算法估计模型参数,该算法扩展到处理重复测量之间的序列相关性,并明确关注已观察到的短单个时间序列的情况。该方法是通过对著名的马斯卡廷(爱荷华州)儿童肥胖纵向研究的重新分析来描述的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal analysis of repeated binary data using autoregressive and random effect modelling
In this paper we extend random coefficient models for binary repeated responses to include serial dependence of Markovian form, with the aim of defining a general association structure among responses recorded on the same individual. We do not adopt a parametric specification for the random coefficients distribution and this allows us to overcome inconsistencies due to misspecification of this component. Model parameters are estimated by means of an EM algorithm for nonparametric maximum likelihood (NPML), which is extended to deal with serial correlation among repeated measures, with an explicit focus on those situations where short individual time series have been observed. The approach is described by presenting a reanalysis of the well-known Muscatine (Iowa) longitudinal study on childhood obesity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信