量子机器学习辅助L支路SC分集接收机在α -µ衰落和CCI环境下的信道容量分析

D. Krstić, S. Suljovic, N. Petrovic, D. Gurjar, S. Yadav, Ashutosh Rastogi
{"title":"量子机器学习辅助L支路SC分集接收机在α -µ衰落和CCI环境下的信道容量分析","authors":"D. Krstić, S. Suljovic, N. Petrovic, D. Gurjar, S. Yadav, Ashutosh Rastogi","doi":"10.1109/SILCON55242.2022.10028953","DOIUrl":null,"url":null,"abstract":"This paper deals with the derivation of the expression for the channel capacity (CC) of selection combining (SC) receiver with L branches in the conditions of short-term fading and co-channel interference (CCI) under α − µ distribution. Usage of α − µ distribution is usually used model for short-term fading of THz links. We first derive the analytical results for the CC in the closed-form under α µ distribution. Then, some graphs are plotted to highlight the− impact of short-term fading and CCI on the CC performance. In addition, quantum computing-based machine learning approach to service consumer number prediction and Quality of Service (QoS) level estimation leveraging the previously obtained channel capacity value using Qiskit library in Python is introduced.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Machine Learning-Assisted Channel Capacity Analysis of L —branch SC Diversity Receiver in α — µ Fading and CCI Environment\",\"authors\":\"D. Krstić, S. Suljovic, N. Petrovic, D. Gurjar, S. Yadav, Ashutosh Rastogi\",\"doi\":\"10.1109/SILCON55242.2022.10028953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the derivation of the expression for the channel capacity (CC) of selection combining (SC) receiver with L branches in the conditions of short-term fading and co-channel interference (CCI) under α − µ distribution. Usage of α − µ distribution is usually used model for short-term fading of THz links. We first derive the analytical results for the CC in the closed-form under α µ distribution. Then, some graphs are plotted to highlight the− impact of short-term fading and CCI on the CC performance. In addition, quantum computing-based machine learning approach to service consumer number prediction and Quality of Service (QoS) level estimation leveraging the previously obtained channel capacity value using Qiskit library in Python is introduced.\",\"PeriodicalId\":183947,\"journal\":{\"name\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SILCON55242.2022.10028953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了在α−µ分布条件下,短时间衰落和同信道干扰(CCI)条件下,L支路选择组合(SC)接收机信道容量(CC)表达式的推导。太赫兹链路的短期衰落通常采用α−µ分布模型。我们首先得到了在αµ分布下的闭型CC的解析结果。然后,绘制了一些图表来突出短期衰落和CCI对CC性能的影响。此外,介绍了基于量子计算的机器学习方法,利用Python中的Qiskit库利用先前获得的信道容量值进行服务消费者数量预测和服务质量(QoS)水平估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Machine Learning-Assisted Channel Capacity Analysis of L —branch SC Diversity Receiver in α — µ Fading and CCI Environment
This paper deals with the derivation of the expression for the channel capacity (CC) of selection combining (SC) receiver with L branches in the conditions of short-term fading and co-channel interference (CCI) under α − µ distribution. Usage of α − µ distribution is usually used model for short-term fading of THz links. We first derive the analytical results for the CC in the closed-form under α µ distribution. Then, some graphs are plotted to highlight the− impact of short-term fading and CCI on the CC performance. In addition, quantum computing-based machine learning approach to service consumer number prediction and Quality of Service (QoS) level estimation leveraging the previously obtained channel capacity value using Qiskit library in Python is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信