非均匀噪声下基于声矢量传感器阵列稀疏重建的DOA估计

Xiangshui Li, Weidong Wang, Hui Li, Wentao Shi
{"title":"非均匀噪声下基于声矢量传感器阵列稀疏重建的DOA估计","authors":"Xiangshui Li, Weidong Wang, Hui Li, Wentao Shi","doi":"10.1109/ICSPCC55723.2022.9984571","DOIUrl":null,"url":null,"abstract":"This paper aims to solve the reduction in direction of arrival estimated accuracy for the acoustic vector sensor array in the existence of non-uniform noise, and proposes an iterative sparse covariance matrix reconstruction (ISCMR) method. We first define a virtual manifold matrix and establish the cost function based on the covariance matrix fitting criterion. Then, using the properties of Frobenius norm to derive the analytical expression of the cost function. Furthermore, the sparse covariance matrix is reconstructed according to the estimated power of sparse signal and noise until the iteration is terminated. Finally, a more exactly DOA estimation is completed by searching spectral peaks on the sparse signal power. The superior performance of the proposed method, comparison with the existing methods, is proved by simulation results in the existence of non-uniform noise.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DOA Estimation Based on Sparse Reconstruction via Acoustic Vector Sensor Array under Non-uniform Noise\",\"authors\":\"Xiangshui Li, Weidong Wang, Hui Li, Wentao Shi\",\"doi\":\"10.1109/ICSPCC55723.2022.9984571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to solve the reduction in direction of arrival estimated accuracy for the acoustic vector sensor array in the existence of non-uniform noise, and proposes an iterative sparse covariance matrix reconstruction (ISCMR) method. We first define a virtual manifold matrix and establish the cost function based on the covariance matrix fitting criterion. Then, using the properties of Frobenius norm to derive the analytical expression of the cost function. Furthermore, the sparse covariance matrix is reconstructed according to the estimated power of sparse signal and noise until the iteration is terminated. Finally, a more exactly DOA estimation is completed by searching spectral peaks on the sparse signal power. The superior performance of the proposed method, comparison with the existing methods, is proved by simulation results in the existence of non-uniform noise.\",\"PeriodicalId\":346917,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC55723.2022.9984571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对存在非均匀噪声时声矢量传感器阵列到达方向估计精度下降的问题,提出了一种迭代稀疏协方差矩阵重构(ISCMR)方法。首先定义了虚拟流形矩阵,并根据协方差矩阵拟合准则建立了代价函数。然后,利用Frobenius范数的性质,推导出成本函数的解析表达式。然后根据稀疏信号和噪声的估计功率重构稀疏协方差矩阵,直至迭代结束。最后,通过对稀疏信号功率的谱峰搜索,完成更精确的DOA估计。仿真结果表明,在非均匀噪声存在的情况下,该方法与现有方法相比具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DOA Estimation Based on Sparse Reconstruction via Acoustic Vector Sensor Array under Non-uniform Noise
This paper aims to solve the reduction in direction of arrival estimated accuracy for the acoustic vector sensor array in the existence of non-uniform noise, and proposes an iterative sparse covariance matrix reconstruction (ISCMR) method. We first define a virtual manifold matrix and establish the cost function based on the covariance matrix fitting criterion. Then, using the properties of Frobenius norm to derive the analytical expression of the cost function. Furthermore, the sparse covariance matrix is reconstructed according to the estimated power of sparse signal and noise until the iteration is terminated. Finally, a more exactly DOA estimation is completed by searching spectral peaks on the sparse signal power. The superior performance of the proposed method, comparison with the existing methods, is proved by simulation results in the existence of non-uniform noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信