基于强化学习的神经形态系统彩色图像分类

Junhee Park, Sumin Jo, Jungwon Lee, Wookyung Sun
{"title":"基于强化学习的神经形态系统彩色图像分类","authors":"Junhee Park, Sumin Jo, Jungwon Lee, Wookyung Sun","doi":"10.1109/ICEIC49074.2020.9051310","DOIUrl":null,"url":null,"abstract":"Neuromorphic hardware system has been studied based on binary monochromatic numerical data. In this study, the input to neuromorphic hardware systems uses binary color images rather than monochrome. Color image classification is implemented using reinforcement learning. In addition, the smaller degree of freedom of synaptic weights is experimented to implement a binary neuromorphic hardware system. More complicated color image classification can be developed with this study.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Color image classification on neuromorphic system using reinforcement learning\",\"authors\":\"Junhee Park, Sumin Jo, Jungwon Lee, Wookyung Sun\",\"doi\":\"10.1109/ICEIC49074.2020.9051310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic hardware system has been studied based on binary monochromatic numerical data. In this study, the input to neuromorphic hardware systems uses binary color images rather than monochrome. Color image classification is implemented using reinforcement learning. In addition, the smaller degree of freedom of synaptic weights is experimented to implement a binary neuromorphic hardware system. More complicated color image classification can be developed with this study.\",\"PeriodicalId\":271345,\"journal\":{\"name\":\"2020 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC49074.2020.9051310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了基于二元单色数值数据的神经形态硬件系统。在本研究中,神经形态硬件系统的输入使用二色图像而不是单色图像。彩色图像分类采用强化学习实现。此外,我们还对突触权值的较小自由度进行了实验,以实现一个二元神经形态硬件系统。通过本研究可以开发更复杂的彩色图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color image classification on neuromorphic system using reinforcement learning
Neuromorphic hardware system has been studied based on binary monochromatic numerical data. In this study, the input to neuromorphic hardware systems uses binary color images rather than monochrome. Color image classification is implemented using reinforcement learning. In addition, the smaller degree of freedom of synaptic weights is experimented to implement a binary neuromorphic hardware system. More complicated color image classification can be developed with this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信