生成式AI用于医学影像分析和应用

Tanmai Sree Musalamadugu, Hemachandran Kannan
{"title":"生成式AI用于医学影像分析和应用","authors":"Tanmai Sree Musalamadugu, Hemachandran Kannan","doi":"10.2217/fmai-2023-0004","DOIUrl":null,"url":null,"abstract":"Generative AI plays a pivotal role in medical imaging analysis, enabling precise diagnosis, treatment planning and disease monitoring. Techniques like generative adversarial networks (GANs) and variational autoencoders (VAEs) enhance medical imaging by generating synthetic images, improving reconstruction, segmentation and facilitating disease diagnosis and treatment planning. Nonetheless, ethical, legal and regulatory concerns arise regarding patient privacy, data protection and fairness. This paper offers an overview of generative AI in medical imaging analysis, highlighting applications, challenges and case studies. It compares results with traditional methods and examines potential implications on healthcare policies. The paper concludes with recommendations for responsible implementation and suggests future research and development directions.","PeriodicalId":154874,"journal":{"name":"Future Medicine AI","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative AI for medical imaging analysis and applications\",\"authors\":\"Tanmai Sree Musalamadugu, Hemachandran Kannan\",\"doi\":\"10.2217/fmai-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative AI plays a pivotal role in medical imaging analysis, enabling precise diagnosis, treatment planning and disease monitoring. Techniques like generative adversarial networks (GANs) and variational autoencoders (VAEs) enhance medical imaging by generating synthetic images, improving reconstruction, segmentation and facilitating disease diagnosis and treatment planning. Nonetheless, ethical, legal and regulatory concerns arise regarding patient privacy, data protection and fairness. This paper offers an overview of generative AI in medical imaging analysis, highlighting applications, challenges and case studies. It compares results with traditional methods and examines potential implications on healthcare policies. The paper concludes with recommendations for responsible implementation and suggests future research and development directions.\",\"PeriodicalId\":154874,\"journal\":{\"name\":\"Future Medicine AI\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Medicine AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/fmai-2023-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Medicine AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/fmai-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成式人工智能在医学影像分析中发挥着关键作用,可以实现精确诊断、治疗计划和疾病监测。生成对抗网络(GANs)和变分自编码器(VAEs)等技术通过生成合成图像、改进重建、分割和促进疾病诊断和治疗计划来增强医学成像。尽管如此,伦理、法律和监管方面的担忧出现在患者隐私、数据保护和公平性方面。本文概述了生成式人工智能在医学成像分析中的应用、挑战和案例研究。它将结果与传统方法进行比较,并检查对医疗保健政策的潜在影响。文章最后提出了负责任实施的建议,并提出了未来的研究和发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative AI for medical imaging analysis and applications
Generative AI plays a pivotal role in medical imaging analysis, enabling precise diagnosis, treatment planning and disease monitoring. Techniques like generative adversarial networks (GANs) and variational autoencoders (VAEs) enhance medical imaging by generating synthetic images, improving reconstruction, segmentation and facilitating disease diagnosis and treatment planning. Nonetheless, ethical, legal and regulatory concerns arise regarding patient privacy, data protection and fairness. This paper offers an overview of generative AI in medical imaging analysis, highlighting applications, challenges and case studies. It compares results with traditional methods and examines potential implications on healthcare policies. The paper concludes with recommendations for responsible implementation and suggests future research and development directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信