移动机器人响应式导航的模糊代理

C. Barret, M. Benreguieg, H. Maaref
{"title":"移动机器人响应式导航的模糊代理","authors":"C. Barret, M. Benreguieg, H. Maaref","doi":"10.1109/KES.1997.619449","DOIUrl":null,"url":null,"abstract":"The authors propose a sensor-based navigation algorithm built thanks to the fusion of various elementary behaviors. The proposed navigator combines two types of obstacle avoidance behavior, one for convex obstacles and one for concave ones. To avoid convex obstacles the navigator uses either a fuzzy tuned artificial potential field (FTAPF) method or a behavioral agent. The concave obstacle avoidance behavior results of \"wall-following\" behavior combined with the creation of transition subgoals. An automatically online tuned fuzzy wall-following system using a neuro-fuzzy structure is designed. The incorporation in the learning cost function of a weight decay term prevents an excessive growth of the weights and allows quick and efficient learning leading to a robust controller optimized with respect to the actual physical characteristics of the robot. The effectiveness of the proposed method is verified by carrying out experiments on the miniature mobile robot Khepera/sup (R/).","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fuzzy agents for reactive navigation of a mobile robot\",\"authors\":\"C. Barret, M. Benreguieg, H. Maaref\",\"doi\":\"10.1109/KES.1997.619449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a sensor-based navigation algorithm built thanks to the fusion of various elementary behaviors. The proposed navigator combines two types of obstacle avoidance behavior, one for convex obstacles and one for concave ones. To avoid convex obstacles the navigator uses either a fuzzy tuned artificial potential field (FTAPF) method or a behavioral agent. The concave obstacle avoidance behavior results of \\\"wall-following\\\" behavior combined with the creation of transition subgoals. An automatically online tuned fuzzy wall-following system using a neuro-fuzzy structure is designed. The incorporation in the learning cost function of a weight decay term prevents an excessive growth of the weights and allows quick and efficient learning leading to a robust controller optimized with respect to the actual physical characteristics of the robot. The effectiveness of the proposed method is verified by carrying out experiments on the miniature mobile robot Khepera/sup (R/).\",\"PeriodicalId\":166931,\"journal\":{\"name\":\"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1997.619449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.619449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

作者提出了一种基于传感器的导航算法,该算法融合了各种基本行为。该导航器结合了两种类型的避障行为,一种是针对凸障碍物的避障行为,另一种是针对凹障碍物的避障行为。为了避免凸障碍物,导航器使用模糊调谐人工势场(FTAPF)方法或行为代理。凹型避障行为是“跟墙”行为结合过渡子目标创建的结果。设计了一种基于神经模糊结构的自动在线调谐模糊墙跟踪系统。在权重衰减项的学习代价函数中加入防止了权重的过度增长,并允许快速有效的学习,从而导致针对机器人实际物理特性进行优化的鲁棒控制器。在小型移动机器人Khepera/sup (R/)上进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy agents for reactive navigation of a mobile robot
The authors propose a sensor-based navigation algorithm built thanks to the fusion of various elementary behaviors. The proposed navigator combines two types of obstacle avoidance behavior, one for convex obstacles and one for concave ones. To avoid convex obstacles the navigator uses either a fuzzy tuned artificial potential field (FTAPF) method or a behavioral agent. The concave obstacle avoidance behavior results of "wall-following" behavior combined with the creation of transition subgoals. An automatically online tuned fuzzy wall-following system using a neuro-fuzzy structure is designed. The incorporation in the learning cost function of a weight decay term prevents an excessive growth of the weights and allows quick and efficient learning leading to a robust controller optimized with respect to the actual physical characteristics of the robot. The effectiveness of the proposed method is verified by carrying out experiments on the miniature mobile robot Khepera/sup (R/).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信