直接生成多变量高斯随机数的fpga专用算法

David B. Thomas, W. Luk
{"title":"直接生成多变量高斯随机数的fpga专用算法","authors":"David B. Thomas, W. Luk","doi":"10.1109/ASAP.2010.5541005","DOIUrl":null,"url":null,"abstract":"The multi-variate Gaussian distribution is used to model random processes with distinct pair-wise correlations, such as stock prices that tend to rise and fall together. Multi-variate Gaussian vectors with length n are usually produced by first generating a vector of n independent Gaussian samples, then multiplying with a correlation inducing matrix requiring 0(n2) multiplications. This paper presents a method of generating vectors directly from the uniform distribution, removing the need for an expensive scalar Gaussian generator, and eliminating the need for any multipliers. The method relies only on small ROMs and adders, and so can be implemented using just logic resources (LUTs and FFs), saving DSP and block-RAM resources for the numerical simulation that the multi-variate generator is driving. The new method provides a ten times increase in raw performance over the fastest existing FPGA generation method, and also provides a five times improvement in performance per resource over the most efficient existing method. Using this method a single 400MHz Virtex-5 FPGA can generate vectors ten times faster than an optimised CUDA implementation on a 1.2GHz GPU, and a hundred times faster than SIMD optimised software on a quad core 2.2GHz CPU.","PeriodicalId":175846,"journal":{"name":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An FPGA-specific algorithm for direct generation of multi-variate Gaussian random numbers\",\"authors\":\"David B. Thomas, W. Luk\",\"doi\":\"10.1109/ASAP.2010.5541005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-variate Gaussian distribution is used to model random processes with distinct pair-wise correlations, such as stock prices that tend to rise and fall together. Multi-variate Gaussian vectors with length n are usually produced by first generating a vector of n independent Gaussian samples, then multiplying with a correlation inducing matrix requiring 0(n2) multiplications. This paper presents a method of generating vectors directly from the uniform distribution, removing the need for an expensive scalar Gaussian generator, and eliminating the need for any multipliers. The method relies only on small ROMs and adders, and so can be implemented using just logic resources (LUTs and FFs), saving DSP and block-RAM resources for the numerical simulation that the multi-variate generator is driving. The new method provides a ten times increase in raw performance over the fastest existing FPGA generation method, and also provides a five times improvement in performance per resource over the most efficient existing method. Using this method a single 400MHz Virtex-5 FPGA can generate vectors ten times faster than an optimised CUDA implementation on a 1.2GHz GPU, and a hundred times faster than SIMD optimised software on a quad core 2.2GHz CPU.\",\"PeriodicalId\":175846,\"journal\":{\"name\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2010.5541005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2010.5541005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

多元高斯分布用于模拟具有明显成对相关性的随机过程,例如倾向于同时上涨和下跌的股票价格。长度为n的多元高斯向量通常是通过首先生成n个独立高斯样本的向量,然后与需要0(n2)次乘法的相关诱导矩阵相乘来产生的。本文提出了一种直接从均匀分布中生成矢量的方法,该方法不需要昂贵的标量高斯发生器,也不需要任何乘法器。该方法仅依赖于小型rom和加法器,因此可以仅使用逻辑资源(lut和ff)来实现,从而节省了用于多变量生成器驱动的数值模拟的DSP和块ram资源。新方法在原始性能上比现有最快的FPGA生成方法提高了10倍,并且在每个资源的性能上比最有效的现有方法提高了5倍。使用这种方法,单个400MHz Virtex-5 FPGA可以比1.2GHz GPU上优化的CUDA实现快10倍,比四核2.2GHz CPU上的SIMD优化软件快100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An FPGA-specific algorithm for direct generation of multi-variate Gaussian random numbers
The multi-variate Gaussian distribution is used to model random processes with distinct pair-wise correlations, such as stock prices that tend to rise and fall together. Multi-variate Gaussian vectors with length n are usually produced by first generating a vector of n independent Gaussian samples, then multiplying with a correlation inducing matrix requiring 0(n2) multiplications. This paper presents a method of generating vectors directly from the uniform distribution, removing the need for an expensive scalar Gaussian generator, and eliminating the need for any multipliers. The method relies only on small ROMs and adders, and so can be implemented using just logic resources (LUTs and FFs), saving DSP and block-RAM resources for the numerical simulation that the multi-variate generator is driving. The new method provides a ten times increase in raw performance over the fastest existing FPGA generation method, and also provides a five times improvement in performance per resource over the most efficient existing method. Using this method a single 400MHz Virtex-5 FPGA can generate vectors ten times faster than an optimised CUDA implementation on a 1.2GHz GPU, and a hundred times faster than SIMD optimised software on a quad core 2.2GHz CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信