走向自动化事实核查:由ClaimBuster检测值得核查的事实声明

Naeemul Hassan, Fatma Arslan, Chengkai Li, Mark Tremayne
{"title":"走向自动化事实核查:由ClaimBuster检测值得核查的事实声明","authors":"Naeemul Hassan, Fatma Arslan, Chengkai Li, Mark Tremayne","doi":"10.1145/3097983.3098131","DOIUrl":null,"url":null,"abstract":"This paper introduces how ClaimBuster, a fact-checking platform, uses natural language processing and supervised learning to detect important factual claims in political discourses. The claim spotting model is built using a human-labeled dataset of check-worthy factual claims from the U.S. general election debate transcripts. The paper explains the architecture and the components of the system and the evaluation of the model. It presents a case study of how ClaimBuster live covers the 2016 U.S. presidential election debates and monitors social media and Australian Hansard for factual claims. It also describes the current status and the long-term goals of ClaimBuster as we keep developing and expanding it.","PeriodicalId":314049,"journal":{"name":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"268","resultStr":"{\"title\":\"Toward Automated Fact-Checking: Detecting Check-worthy Factual Claims by ClaimBuster\",\"authors\":\"Naeemul Hassan, Fatma Arslan, Chengkai Li, Mark Tremayne\",\"doi\":\"10.1145/3097983.3098131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces how ClaimBuster, a fact-checking platform, uses natural language processing and supervised learning to detect important factual claims in political discourses. The claim spotting model is built using a human-labeled dataset of check-worthy factual claims from the U.S. general election debate transcripts. The paper explains the architecture and the components of the system and the evaluation of the model. It presents a case study of how ClaimBuster live covers the 2016 U.S. presidential election debates and monitors social media and Australian Hansard for factual claims. It also describes the current status and the long-term goals of ClaimBuster as we keep developing and expanding it.\",\"PeriodicalId\":314049,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"268\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3097983.3098131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097983.3098131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 268

摘要

本文介绍了事实核查平台ClaimBuster如何使用自然语言处理和监督学习来检测政治话语中的重要事实主张。索赔发现模型是使用人类标记的数据集建立的,这些数据集来自美国大选辩论记录中值得检查的事实索赔。本文阐述了系统的体系结构和组成,并对模型进行了评价。它提供了一个案例研究,说明ClaimBuster live如何报道2016年美国总统大选辩论,并监控社交媒体和澳大利亚议事录中的事实主张。它还描述了ClaimBuster的现状和长期目标,因为我们不断发展和扩展它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Automated Fact-Checking: Detecting Check-worthy Factual Claims by ClaimBuster
This paper introduces how ClaimBuster, a fact-checking platform, uses natural language processing and supervised learning to detect important factual claims in political discourses. The claim spotting model is built using a human-labeled dataset of check-worthy factual claims from the U.S. general election debate transcripts. The paper explains the architecture and the components of the system and the evaluation of the model. It presents a case study of how ClaimBuster live covers the 2016 U.S. presidential election debates and monitors social media and Australian Hansard for factual claims. It also describes the current status and the long-term goals of ClaimBuster as we keep developing and expanding it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信