潜在语义分析在信息检索中的应用研究

C. Wenli
{"title":"潜在语义分析在信息检索中的应用研究","authors":"C. Wenli","doi":"10.1109/ICMTMA.2016.37","DOIUrl":null,"url":null,"abstract":"The basic principle of Classic traditional information retrieval model is the machine matching of the key word, namely retrieval based on keywords. This paper proposes a pre-clustering-based latent semantic analysis algorithm for document retrieval. The algorithm can solve the problem of time consuming computation of the similarity between the query vector and each text vector in the traditional latent semantic algorithm for document retrieval. It first clusters the documents using k-means clustering based on the latent semantic analysis, finds out the central point of each cluster, and then calculates the similarity between the query vector and each cluster's central points for retrieval. In view of the characteristics of document retrieval, it proposes a new method for calculating the feature weights and adopts the method of pre-clustering to preprocess document collection. The results of the experiment show that the new algorithm can reduce the search time, and improve the retrieval efficiency.","PeriodicalId":318523,"journal":{"name":"2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Application Research on Latent Semantic Analysis for Information Retrieval\",\"authors\":\"C. Wenli\",\"doi\":\"10.1109/ICMTMA.2016.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic principle of Classic traditional information retrieval model is the machine matching of the key word, namely retrieval based on keywords. This paper proposes a pre-clustering-based latent semantic analysis algorithm for document retrieval. The algorithm can solve the problem of time consuming computation of the similarity between the query vector and each text vector in the traditional latent semantic algorithm for document retrieval. It first clusters the documents using k-means clustering based on the latent semantic analysis, finds out the central point of each cluster, and then calculates the similarity between the query vector and each cluster's central points for retrieval. In view of the characteristics of document retrieval, it proposes a new method for calculating the feature weights and adopts the method of pre-clustering to preprocess document collection. The results of the experiment show that the new algorithm can reduce the search time, and improve the retrieval efficiency.\",\"PeriodicalId\":318523,\"journal\":{\"name\":\"2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTMA.2016.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTMA.2016.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

经典的传统信息检索模型的基本原理是关键词的机器匹配,即基于关键词的检索。提出了一种基于预聚类的潜在语义分析算法。该算法解决了传统潜在语义检索算法中查询向量与各文本向量相似度计算耗时的问题。该算法首先利用基于潜在语义分析的k-means聚类方法对文档进行聚类,找出每个聚类的中心点,然后计算查询向量与每个聚类中心点之间的相似度进行检索。针对文档检索的特点,提出了一种新的特征权重计算方法,并采用预聚类的方法对文档集合进行预处理。实验结果表明,新算法可以减少搜索时间,提高检索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Research on Latent Semantic Analysis for Information Retrieval
The basic principle of Classic traditional information retrieval model is the machine matching of the key word, namely retrieval based on keywords. This paper proposes a pre-clustering-based latent semantic analysis algorithm for document retrieval. The algorithm can solve the problem of time consuming computation of the similarity between the query vector and each text vector in the traditional latent semantic algorithm for document retrieval. It first clusters the documents using k-means clustering based on the latent semantic analysis, finds out the central point of each cluster, and then calculates the similarity between the query vector and each cluster's central points for retrieval. In view of the characteristics of document retrieval, it proposes a new method for calculating the feature weights and adopts the method of pre-clustering to preprocess document collection. The results of the experiment show that the new algorithm can reduce the search time, and improve the retrieval efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信