{"title":"求解强凸问题的A-HPE和大阶A-HPE算法的变体及其在加速高阶张量方法中的应用","authors":"M. Marques Alves","doi":"10.1080/10556788.2021.2022148","DOIUrl":null,"url":null,"abstract":"For solving strongly convex optimization problems, we propose and study the global convergence of variants of the accelerated hybrid proximal extragradient (A-HPE) and large-step A-HPE algorithms of R.D.C. Monteiro and B.F. Svaiter [An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods, SIAM J. Optim. 23 (2013), pp. 1092–1125.]. We prove linear and the superlinear global rates for the proposed variants of the A-HPE and large-step A-HPE methods, respectively. The parameter appears in the (high-order) large-step condition of the new large-step A-HPE algorithm. We apply our results to high-order tensor methods, obtaining a new inexact (relative-error) tensor method for (smooth) strongly convex optimization with iteration-complexity . In particular, for p = 2, we obtain an inexact proximal-Newton algorithm with fast global convergence rate.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Variants of the A-HPE and large-step A-HPE algorithms for strongly convex problems with applications to accelerated high-order tensor methods\",\"authors\":\"M. Marques Alves\",\"doi\":\"10.1080/10556788.2021.2022148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For solving strongly convex optimization problems, we propose and study the global convergence of variants of the accelerated hybrid proximal extragradient (A-HPE) and large-step A-HPE algorithms of R.D.C. Monteiro and B.F. Svaiter [An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods, SIAM J. Optim. 23 (2013), pp. 1092–1125.]. We prove linear and the superlinear global rates for the proposed variants of the A-HPE and large-step A-HPE methods, respectively. The parameter appears in the (high-order) large-step condition of the new large-step A-HPE algorithm. We apply our results to high-order tensor methods, obtaining a new inexact (relative-error) tensor method for (smooth) strongly convex optimization with iteration-complexity . In particular, for p = 2, we obtain an inexact proximal-Newton algorithm with fast global convergence rate.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2021.2022148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.2022148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
摘要
为了解决强凸优化问题,我们提出并研究了R.D.C. Monteiro和B.F. swaiter的加速混合近端外梯度(A-HPE)和大步A-HPE算法的全局收敛性[凸优化的加速混合近端外梯度方法及其对二阶方法的影响,SIAM J. Optim. 23 (2013), pp. 1092-1125]。我们分别证明了A-HPE和大阶A-HPE方法的线性和超线性全局速率。该参数出现在新的大阶A-HPE算法的(高阶)大阶条件下。我们将我们的结果应用到高阶张量方法中,得到了一种新的非精确(相对误差)张量方法,用于迭代复杂度的(光滑)强凸优化。特别地,当p = 2时,我们得到了一个全局收敛速度快的不精确的近端牛顿算法。
Variants of the A-HPE and large-step A-HPE algorithms for strongly convex problems with applications to accelerated high-order tensor methods
For solving strongly convex optimization problems, we propose and study the global convergence of variants of the accelerated hybrid proximal extragradient (A-HPE) and large-step A-HPE algorithms of R.D.C. Monteiro and B.F. Svaiter [An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods, SIAM J. Optim. 23 (2013), pp. 1092–1125.]. We prove linear and the superlinear global rates for the proposed variants of the A-HPE and large-step A-HPE methods, respectively. The parameter appears in the (high-order) large-step condition of the new large-step A-HPE algorithm. We apply our results to high-order tensor methods, obtaining a new inexact (relative-error) tensor method for (smooth) strongly convex optimization with iteration-complexity . In particular, for p = 2, we obtain an inexact proximal-Newton algorithm with fast global convergence rate.