简单随机对策中能量平价目标值的逼近

Mohan Dantam, Richard Mayr
{"title":"简单随机对策中能量平价目标值的逼近","authors":"Mohan Dantam, Richard Mayr","doi":"10.48550/arXiv.2307.05762","DOIUrl":null,"url":null,"abstract":"We consider simple stochastic games $\\mathcal G$ with energy-parity objectives, a combination of quantitative rewards with a qualitative parity condition. The Maximizer tries to avoid running out of energy while simultaneously satisfying a parity condition. We present an algorithm to approximate the value of a given configuration in 2-NEXPTIME. Moreover, $\\varepsilon$-optimal strategies for either player require at most $O(2EXP(|{\\mathcal G}|)\\cdot\\log(\\frac{1}{\\varepsilon}))$ memory modes.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating the Value of Energy-Parity Objectives in Simple Stochastic Games\",\"authors\":\"Mohan Dantam, Richard Mayr\",\"doi\":\"10.48550/arXiv.2307.05762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider simple stochastic games $\\\\mathcal G$ with energy-parity objectives, a combination of quantitative rewards with a qualitative parity condition. The Maximizer tries to avoid running out of energy while simultaneously satisfying a parity condition. We present an algorithm to approximate the value of a given configuration in 2-NEXPTIME. Moreover, $\\\\varepsilon$-optimal strategies for either player require at most $O(2EXP(|{\\\\mathcal G}|)\\\\cdot\\\\log(\\\\frac{1}{\\\\varepsilon}))$ memory modes.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.05762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.05762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有能量平价目标的简单随机博弈$\mathcal G$,定量奖励与定性平价条件的组合。Maximizer试图在满足奇偶性条件的同时避免耗尽能量。我们提出了一种算法来近似2-NEXPTIME中给定配置的值。此外,$\varepsilon$ -任何玩家的最优策略最多需要$O(2EXP(|{\mathcal G}|)\cdot\log(\frac{1}{\varepsilon}))$记忆模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating the Value of Energy-Parity Objectives in Simple Stochastic Games
We consider simple stochastic games $\mathcal G$ with energy-parity objectives, a combination of quantitative rewards with a qualitative parity condition. The Maximizer tries to avoid running out of energy while simultaneously satisfying a parity condition. We present an algorithm to approximate the value of a given configuration in 2-NEXPTIME. Moreover, $\varepsilon$-optimal strategies for either player require at most $O(2EXP(|{\mathcal G}|)\cdot\log(\frac{1}{\varepsilon}))$ memory modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信