实时遍历数万亿条边:大规模并行机器上的图探索

Fabio Checconi, F. Petrini
{"title":"实时遍历数万亿条边:大规模并行机器上的图探索","authors":"Fabio Checconi, F. Petrini","doi":"10.1109/IPDPS.2014.52","DOIUrl":null,"url":null,"abstract":"The world of Big Data is changing dramatically right before our eyes-from the amount of data being produced to the way in which it is structured and used. The trend of \"big data growth\" presents enormous challenges, but it also presents incredible scientific and business opportunities. Together with the data explosion, we are also witnessing a dramatic increase in data processing capabilities, thanks to new powerful parallel computer architectures and more sophisticated algorithms. In this paper we describe the algorithmic design and the optimization techniques that led to the unprecedented processing rate of 15.3 trillion edges per second on 64 thousand Blue Gene/Q nodes, that allowed the in-memory exploration of a petabyte-scale graph in just a few seconds. This paper provides insight into our parallelization and optimization techniques. We believe that these techniques can be successfully applied to a broader class of graph algorithms.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Traversing Trillions of Edges in Real Time: Graph Exploration on Large-Scale Parallel Machines\",\"authors\":\"Fabio Checconi, F. Petrini\",\"doi\":\"10.1109/IPDPS.2014.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world of Big Data is changing dramatically right before our eyes-from the amount of data being produced to the way in which it is structured and used. The trend of \\\"big data growth\\\" presents enormous challenges, but it also presents incredible scientific and business opportunities. Together with the data explosion, we are also witnessing a dramatic increase in data processing capabilities, thanks to new powerful parallel computer architectures and more sophisticated algorithms. In this paper we describe the algorithmic design and the optimization techniques that led to the unprecedented processing rate of 15.3 trillion edges per second on 64 thousand Blue Gene/Q nodes, that allowed the in-memory exploration of a petabyte-scale graph in just a few seconds. This paper provides insight into our parallelization and optimization techniques. We believe that these techniques can be successfully applied to a broader class of graph algorithms.\",\"PeriodicalId\":309291,\"journal\":{\"name\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 28th International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2014.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

大数据的世界正在我们眼前发生着巨大的变化——从产生的数据量到数据的结构和使用方式。“大数据增长”的趋势带来了巨大的挑战,但也带来了令人难以置信的科学和商业机会。随着数据的爆炸式增长,我们也见证了数据处理能力的急剧增长,这要归功于新的强大的并行计算机架构和更复杂的算法。在本文中,我们描述了算法设计和优化技术,这些技术使64000个Blue Gene/Q节点的处理速度达到前所未有的每秒15.3万亿个边,这使得在几秒钟内就可以在内存中探索一个pb级的图。本文介绍了我们的并行化和优化技术。我们相信这些技术可以成功地应用于更广泛的图算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traversing Trillions of Edges in Real Time: Graph Exploration on Large-Scale Parallel Machines
The world of Big Data is changing dramatically right before our eyes-from the amount of data being produced to the way in which it is structured and used. The trend of "big data growth" presents enormous challenges, but it also presents incredible scientific and business opportunities. Together with the data explosion, we are also witnessing a dramatic increase in data processing capabilities, thanks to new powerful parallel computer architectures and more sophisticated algorithms. In this paper we describe the algorithmic design and the optimization techniques that led to the unprecedented processing rate of 15.3 trillion edges per second on 64 thousand Blue Gene/Q nodes, that allowed the in-memory exploration of a petabyte-scale graph in just a few seconds. This paper provides insight into our parallelization and optimization techniques. We believe that these techniques can be successfully applied to a broader class of graph algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信