大型分类数据集聚类的分布式ROCK算法实现及性能分析

A. Patidar, R. Joshi, Surendra Mishra
{"title":"大型分类数据集聚类的分布式ROCK算法实现及性能分析","authors":"A. Patidar, R. Joshi, Surendra Mishra","doi":"10.1109/ICECTECH.2011.5941659","DOIUrl":null,"url":null,"abstract":"Clustering in data mining, is useful to discover distribution patterns in the underlying data. ROCK is one such hierarchical clustering algorithm, which works on sampled data. We show that sequential ROCK algorithm is time consuming for large dataset. Instead, we present distributed algorithms with better performance than known algorithms. We develop a robust hierarchical clustering algorithm ROCK that employs preliminary calculations to be done at different processors. In addition to presenting detailed complexity results for DROCK we also conduct an experimental study with real life data sets to demonstrate the effectiveness of our technique.","PeriodicalId":184011,"journal":{"name":"2011 3rd International Conference on Electronics Computer Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementation of distributed ROCK algorithm for clustering of large categorical datasets and its performance analysis\",\"authors\":\"A. Patidar, R. Joshi, Surendra Mishra\",\"doi\":\"10.1109/ICECTECH.2011.5941659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering in data mining, is useful to discover distribution patterns in the underlying data. ROCK is one such hierarchical clustering algorithm, which works on sampled data. We show that sequential ROCK algorithm is time consuming for large dataset. Instead, we present distributed algorithms with better performance than known algorithms. We develop a robust hierarchical clustering algorithm ROCK that employs preliminary calculations to be done at different processors. In addition to presenting detailed complexity results for DROCK we also conduct an experimental study with real life data sets to demonstrate the effectiveness of our technique.\",\"PeriodicalId\":184011,\"journal\":{\"name\":\"2011 3rd International Conference on Electronics Computer Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Conference on Electronics Computer Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTECH.2011.5941659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Electronics Computer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTECH.2011.5941659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在数据挖掘中,聚类有助于发现底层数据中的分布模式。ROCK就是这样一种分层聚类算法,它适用于采样数据。结果表明,对于大型数据集,顺序ROCK算法非常耗时。相反,我们提出了比已知算法性能更好的分布式算法。我们开发了一个鲁棒的分层聚类算法ROCK,它采用了在不同处理器上完成的初步计算。除了展示rock的详细复杂性结果外,我们还使用实际数据集进行了实验研究,以证明我们技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of distributed ROCK algorithm for clustering of large categorical datasets and its performance analysis
Clustering in data mining, is useful to discover distribution patterns in the underlying data. ROCK is one such hierarchical clustering algorithm, which works on sampled data. We show that sequential ROCK algorithm is time consuming for large dataset. Instead, we present distributed algorithms with better performance than known algorithms. We develop a robust hierarchical clustering algorithm ROCK that employs preliminary calculations to be done at different processors. In addition to presenting detailed complexity results for DROCK we also conduct an experimental study with real life data sets to demonstrate the effectiveness of our technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信